Create new file
Browse files
app.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#Importing all the necessary packages
|
2 |
+
import nltk
|
3 |
+
import librosa
|
4 |
+
import IPython.display
|
5 |
+
import torch
|
6 |
+
import gradio as gr
|
7 |
+
from transformers import Wav2Vec2Tokenizer, Wav2Vec2ForCTC
|
8 |
+
nltk.download("punkt")
|
9 |
+
#Loading the model and the tokenizer
|
10 |
+
model_name = "facebook/wav2vec2-base-960h"
|
11 |
+
tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name)#omdel_name
|
12 |
+
model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
13 |
+
|
14 |
+
def load_data(input_file):
|
15 |
+
""" Function for resampling to ensure that the speech input is sampled at 16KHz.
|
16 |
+
"""
|
17 |
+
#read the file
|
18 |
+
speech, sample_rate = librosa.load(input_file)
|
19 |
+
#make it 1-D
|
20 |
+
if len(speech.shape) > 1:
|
21 |
+
speech = speech[:,0] + speech[:,1]
|
22 |
+
#Resampling at 16KHz since wav2vec2-base-960h is pretrained and fine-tuned on speech audio sampled at 16 KHz.
|
23 |
+
if sample_rate !=16000:
|
24 |
+
speech = librosa.resample(speech, sample_rate,16000)
|
25 |
+
#speeches = librosa.effects.split(speech)
|
26 |
+
return speech
|
27 |
+
def correct_casing(input_sentence):
|
28 |
+
""" This function is for correcting the casing of the generated transcribed text
|
29 |
+
"""
|
30 |
+
sentences = nltk.sent_tokenize(input_sentence)
|
31 |
+
return (' '.join([s.replace(s[0],s[0].capitalize(),1) for s in sentences]))
|
32 |
+
|
33 |
+
def asr_transcript(input_file):
|
34 |
+
"""This function generates transcripts for the provided audio input
|
35 |
+
"""
|
36 |
+
speech = load_data(input_file)
|
37 |
+
#Tokenize
|
38 |
+
input_values = tokenizer(speech, return_tensors="pt").input_values
|
39 |
+
#Take logits
|
40 |
+
logits = model(input_values).logits
|
41 |
+
#Take argmax
|
42 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
43 |
+
#Get the words from predicted word ids
|
44 |
+
transcription = tokenizer.decode(predicted_ids[0])
|
45 |
+
#Output is all upper case
|
46 |
+
transcription = correct_casing(transcription.lower())
|
47 |
+
return transcription
|
48 |
+
def asr_transcript_long(input_file,tokenizer=tokenizer, model=model ):
|
49 |
+
transcript = ""
|
50 |
+
# Ensure that the sample rate is 16k
|
51 |
+
sample_rate = librosa.get_samplerate(input_file)
|
52 |
+
|
53 |
+
# Stream over 10 seconds chunks rather than load the full file
|
54 |
+
stream = librosa.stream(
|
55 |
+
input_file,
|
56 |
+
block_length=20, #number of seconds to split the batch
|
57 |
+
frame_length=sample_rate, #16000,
|
58 |
+
hop_length=sample_rate, #16000
|
59 |
+
)
|
60 |
+
|
61 |
+
for speech in stream:
|
62 |
+
if len(speech.shape) > 1:
|
63 |
+
speech = speech[:, 0] + speech[:, 1]
|
64 |
+
if sample_rate !=16000:
|
65 |
+
speech = librosa.resample(speech, sample_rate,16000)
|
66 |
+
input_values = tokenizer(speech, return_tensors="pt").input_values
|
67 |
+
logits = model(input_values).logits
|
68 |
+
|
69 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
70 |
+
transcription = tokenizer.decode(predicted_ids[0])
|
71 |
+
#transcript += transcription.lower()
|
72 |
+
transcript += correct_casing(transcription.lower())
|
73 |
+
#transcript += " "
|
74 |
+
|
75 |
+
return transcript[:3800]
|
76 |
+
gr.Interface(asr_transcript_long,
|
77 |
+
#inputs = gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Please record your voice"),
|
78 |
+
inputs = gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Upload your audio file here"),
|
79 |
+
outputs = gr.outputs.Textbox(type="str",label="Output Text"),
|
80 |
+
title="English Audio Transcriptor",
|
81 |
+
description = "This tool transcribes your audio to the text",
|
82 |
+
# examples = [["Batman1_dialogue.wav"], ["Batman2_dialogue.wav"], ["Batman3_dialogue.wav"],["catwoman_dialogue.wav"]], theme="grass").launch()
|
83 |
+
|