--- title: README emoji: 📚 colorFrom: green colorTo: gray sdk: static pinned: false --- **Disclaimer**: VPTQ-community is a open source community to reproduced models on the paper *VPTQ: Extreme Low-bit Vector Post-Training Quantization for Large Language Models* [**github**](https://github.com/microsoft/vptq) It is intended only for experimental purposes. Users are responsible for any consequences arising from the use of this model. # VPTQ: Extreme Low-bit Vector Post-Training Quantization for Large Language Models ## TL;DR **Vector Post-Training Quantization (VPTQ)** is a novel Post-Training Quantization method that leverages **Vector Quantization** to high accuracy on LLMs at an extremely low bit-width (<2-bit). VPTQ can compress 70B, even the 405B model, to 1-2 bits without retraining and maintain high accuracy. * Better Accuracy on 1-2 bits * Lightweight Quantization Algorithm: only cost ~17 hours to quantize 405B Llama-3.1 * Agile Quantization Inference: low decode overhead, best throughput, and TTFT **Example: Run Llama 3.1 70b on RTX4090 (24G @ ~2bits) in real time** ![Llama3 1-70b-prompt](https://github.com/user-attachments/assets/d8729aca-4e1d-4fe1-ac71-c14da4bdd97f) ## [**Tech Report**](https://github.com/microsoft/VPTQ/blob/main/VPTQ_tech_report.pdf) Scaling model size significantly challenges the deployment and inference of Large Language Models (LLMs). Due to the redundancy in LLM weights, recent research has focused on pushing weight-only quantization to extremely low-bit (even down to 2 bits). It reduces memory requirements, optimizes storage costs, and decreases memory bandwidth needs during inference. However, due to numerical representation limitations, traditional scalar-based weight quantization struggles to achieve such extreme low-bit. Recent research on Vector Quantization (VQ) for LLMs has demonstrated the potential for extremely low-bit model quantization by compressing vectors into indices using lookup tables. Read tech report at [**Tech Report**](https://github.com/microsoft/VPTQ/blob/main/VPTQ_tech_report.pdf) and [**arXiv Paper**](https://arxiv.org/pdf/2409.17066) ## Models from Open Source Community ⚠️ The repository only provides a method of model quantization algorithm. ⚠️ The open-source community [VPTQ-community](https://huggingface.co/VPTQ-community) provides models based on the technical report and quantization algorithm. ⚠️ The repository cannot guarantee the performance of those models. **Quick Estimation of Model Bitwidth (Excluding Codebook Overhead)**: - **Model Naming Convention**: The model's name includes the **vector length** $v$, **codebook (lookup table) size**, and **residual codebook size**. For example, "Meta-Llama-3.1-70B-Instruct-v8-k65536-256-woft" and "Meta-Llama-3.1-70B-Instruct", where: - **Vector Length**: 8 - **Number of Centroids**: 65536 (2^16) - **Number of Residual Centroids**: 256 (2^8) - **Equivalent Bitwidth Calculation**: - **Index**: log2(65536) = 16 / 8 = 2 bits - **Residual Index**: log2(256) = 8 / 8 = 1 bit - **Total Bitwidth**: 2 + 1 = 3 bits - **Model Size Estimation**: 70B * 3 bits / 8 bits per Byte = 26.25 GB - **Note**: This estimate does not include the size of the codebook (lookup table), other parameter overheads, and the padding overhead for storing indices. For the detailed calculation method, please refer to **Tech Report Appendix C.2**. | Model Series | Collections | (Estimated) Bit per weight | | :--------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------: | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | Llama 3.1 8B Instruct | [HF 🤗](https://huggingface.co/collections/VPTQ-community/vptq-llama-31-8b-instruct-without-finetune-66f2b70b1d002ceedef02d2e) | [4 bits](https://huggingface.co/VPTQ-community/Meta-Llama-3.1-8B-Instruct-v8-k65536-65536-woft) [3.5 bits](https://huggingface.co/VPTQ-community/Meta-Llama-3.1-8B-Instruct-v8-k65536-4096-woft) [3 bits](https://huggingface.co/VPTQ-community/Meta-Llama-3.1-8B-Instruct-v8-k65536-256-woft) [2.3 bits](https://huggingface.co/VPTQ-community/Meta-Llama-3.1-8B-Instruct-v12-k65536-4096-woft) | | Llama 3.1 70B Instruct | [HF 🤗](https://huggingface.co/collections/VPTQ-community/vptq-llama-31-70b-instruct-without-finetune-66f2bf454d3dd78dfee2ff11) | [4 bits](https://huggingface.co/VPTQ-community/Meta-Llama-3.1-70B-Instruct-v8-k65536-65536-woft) [3 bits](https://huggingface.co/VPTQ-community/Meta-Llama-3.1-70B-Instruct-v8-k65536-256-woft) [2.25 bits](https://huggingface.co/VPTQ-community/Meta-Llama-3.1-70B-Instruct-v8-k65536-4-woft) [2 bits (1)](https://huggingface.co/VPTQ-community/Meta-Llama-3.1-70B-Instruct-v16-k65536-65536-woft) [2 bits (2)](https://huggingface.co/VPTQ-community/Meta-Llama-3.1-70B-Instruct-v8-k65536-0-woft) [1.93 bits](https://huggingface.co/VPTQ-community/Meta-Llama-3.1-70B-Instruct-v16-k65536-32768-woft) [1.875 bits](https://huggingface.co/VPTQ-community/Meta-Llama-3.1-70B-Instruct-v8-k32768-0-woft) [1.75 bits](https://huggingface.co/VPTQ-community/Meta-Llama-3.1-70B-Instruct-v8-k16384-0-woft) | | Llama 3.1 405B Instruct | [HF 🤗](https://huggingface.co/collections/VPTQ-community/vptq-llama-31-405b-instruct-without-finetune-66f4413f9ba55e1a9e52cfb0) | [4 bits](https://huggingface.co/VPTQ-community/Meta-Llama-3.1-405B-Instruct-v8-k65536-65536-woft) [3 bits](https://huggingface.co/VPTQ-community/Meta-Llama-3.1-405B-Instruct-v8-k65536-256-woft) [2 bits](https://huggingface.co/VPTQ-community/Meta-Llama-3.1-405B-Instruct-v16-k65536-65536-woft) [1.875 bits](https://huggingface.co/VPTQ-community/Meta-Llama-3.1-405B-Instruct-v16-k32768-32768-woft) [1.625 bits](https://huggingface.co/VPTQ-community/Meta-Llama-3.1-405B-Instruct-v16-k65536-1024-woft) [1.5 bits (1)](https://huggingface.co/VPTQ-community/Meta-Llama-3.1-405B-Instruct-v8-k4096-0-woft) [1.5 bits (2)](https://huggingface.co/VPTQ-community/Meta-Llama-3.1-405B-Instruct-v16-k65536-256-woft) [1.43 bits](https://huggingface.co/VPTQ-community/Meta-Llama-3.1-405B-Instruct-v16-k65536-128-woft) [1.375 bits](https://huggingface.co/VPTQ-community/Meta-Llama-3.1-405B-Instruct-v16-k65536-64-woft) | | Mistral Large Instruct 2407 (123B) | [HF 🤗](https://huggingface.co/collections/VPTQ-community/vptq-mistral-large-instruct-2407-without-finetune-6711ebfb7faf85eed9cceb16) | [4 bits](https://huggingface.co/VPTQ-community/Mistral-Large-Instruct-2407-v8-k65536-65536-woft) [3 bits](https://huggingface.co/VPTQ-community/Mistral-Large-Instruct-2407-v8-k65536-256-woft) [2 bits (1)](https://huggingface.co/VPTQ-community/Mistral-Large-Instruct-2407-v16-k65536-65536-woft) [2 bits (2)](https://huggingface.co/VPTQ-community/Mistral-Large-Instruct-2407-v8-k65536-0-woft) [1.875 bits](https://huggingface.co/VPTQ-community/Mistral-Large-Instruct-2407-v16-k65536-16384-woft) [1.75 bits](https://huggingface.co/VPTQ-community/Mistral-Large-Instruct-2407-v16-k65536-4096-woft) [1.625 bits](https://huggingface.co/VPTQ-community/Mistral-Large-Instruct-2407-v16-k65536-1024-woft) [1.5 bits](https://huggingface.co/VPTQ-community/Mistral-Large-Instruct-2407-v16-k65536-256-woft) | | Qwen 2.5 7B Instruct | [HF 🤗](https://huggingface.co/collections/VPTQ-community/vptq-qwen-25-7b-instruct-without-finetune-66f3e9866d3167cc05ce954a) | [4 bits](https://huggingface.co/VPTQ-community/Qwen2.5-7B-Instruct-v8-k65536-65536-woft) [3 bits](https://huggingface.co/VPTQ-community/Qwen2.5-7B-Instruct-v8-k65536-256-woft) [2 bits (1)](https://huggingface.co/VPTQ-community/Qwen2.5-7B-Instruct-v8-k256-256-woft) [2 bits (2)](https://huggingface.co/VPTQ-community/Qwen2.5-7B-Instruct-v8-k65536-0-woft) [2 bits (3)](https://huggingface.co/VPTQ-community/Qwen2.5-7B-Instruct-v16-k65536-65536-woft) | | Qwen 2.5 14B Instruct | [HF 🤗](https://huggingface.co/collections/VPTQ-community/vptq-qwen-25-14b-instruct-without-finetune-66f827f83c7ffa7931b8376c) | [4 bits](https://huggingface.co/VPTQ-community/Qwen2.5-14B-Instruct-v8-k65536-65536-woft) [3 bits](https://huggingface.co/VPTQ-community/Qwen2.5-14B-Instruct-v8-k65536-256-woft) [2 bits (1)](https://huggingface.co/VPTQ-community/Qwen2.5-14B-Instruct-v8-k256-256-woft) [2 bits (2)](https://huggingface.co/VPTQ-community/Qwen2.5-14B-Instruct-v8-k65536-0-woft) [2 bits (3)](https://huggingface.co/VPTQ-community/Qwen2.5-14B-Instruct-v16-k65536-65536-woft) | | Qwen 2.5 32B Instruct | [HF 🤗](https://huggingface.co/collections/VPTQ-community/vptq-qwen-25-32b-instruct-without-finetune-66fe77173bf7d64139f0f613) | [4 bits](https://huggingface.co/VPTQ-community/Qwen2.5-32B-Instruct-v8-k65536-65536-woft) [3 bits](https://huggingface.co/VPTQ-community/Qwen2.5-32B-Instruct-v8-k65536-256-woft) [2 bits (1)](https://huggingface.co/VPTQ-community/Qwen2.5-32B-Instruct-v16-k65536-65536-woft) [2 bits (2)](https://huggingface.co/VPTQ-community/Qwen2.5-32B-Instruct-v8-k65536-0-woft) [2 bits (3)](https://huggingface.co/VPTQ-community/Qwen2.5-32B-Instruct-v8-k256-256-woft) | | Qwen 2.5 72B Instruct | [HF 🤗](https://huggingface.co/collections/VPTQ-community/vptq-qwen-25-72b-instruct-without-finetune-66f3bf1b3757dfa1ecb481c0) | [4 bits](https://huggingface.co/VPTQ-community/Qwen2.5-72B-Instruct-v8-k65536-65536-woft) [3 bits](https://huggingface.co/VPTQ-community/Qwen2.5-72B-Instruct-v8-k65536-256-woft) [2.38 bits](https://huggingface.co/VPTQ-community/Qwen2.5-72B-Instruct-v8-k1024-512-woft) [2.25 bits (1)](https://huggingface.co/VPTQ-community/Qwen2.5-72B-Instruct-v8-k512-512-woft) [2.25 bits (2)](https://huggingface.co/VPTQ-community/Qwen2.5-72B-Instruct-v8-k65536-4-woft) [2 bits (1)](https://huggingface.co/VPTQ-community/Qwen2.5-72B-Instruct-v8-k65536-0-woft) [2 bits (2)](https://huggingface.co/VPTQ-community/Qwen2.5-72B-Instruct-v16-k65536-65536-woft) [1.94 bits](https://huggingface.co/VPTQ-community/Qwen2.5-72B-Instruct-v16-k65536-32768-woft) | | Reproduced from the tech report | [HF 🤗](https://huggingface.co/collections/VPTQ-community/reproduced-vptq-tech-report-baseline-66fbf1dffe741cc9e93ecf04) | Results from the open source community for reference only, please use them responsibly. | | Hessian and Inverse Hessian Matrix | [HF 🤗](https://huggingface.co/collections/VPTQ-community/hessian-and-invhessian-checkpoints-66fd249a104850d17b23fd8b) | Collected from RedPajama-Data-1T-Sample, following [Quip#](https://github.com/Cornell-RelaxML/quip-sharp/blob/main/quantize_llama/hessian_offline_llama.py) | ## A Space Demo A live-chatbot is created with [VPTQ-LLM-2bit demo](https://huggingface.co/spaces/OpenSourceRonin/LLM-2Bit) over VPTQ.