from fastai.vision import * from fastai.learner import load_learner from PIL import Image import gradio as gr from pathlib import Path learn = load_learner(Path("model.pkl")) categories = list(learn.dls.vocab) def classify_image(img): pred, ix, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) # Whats the gradio input type? Image image = gr.inputs.Image(shape=(192,192)) # Whats the gradio output type? Label label = gr.outputs.Label() # Set up some examples examples = [Path("examples/kairi.jpg"), Path("examples/riku.jpg"), Path("examples/sora.jpg")] intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) intf.launch(inline=False)