from fastai.vision import * from fastai.learner import load_learner from PIL import Image import gradio as gr image = Image.open("examples/riku.jpg") image.thumbnail((512,512)) image learn = load_learner("model.pkl") categories = list(learn.dls.vocab) result,_,probs = learn.predict(image) print(f"This is a: {result}") print(f"Probability it's a {result}: {probs[categories.index(result)] * 100:.02f}%") def classify_image(img): pred, ix, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) print(classify_image(image)) # Whats the gradio input type? Image image = gr.inputs.Image(shape=(192,192)) # Whats the gradio output type? Label label = gr.outputs.Label() # Set up some examples examples = ["examples/kairi.jpg", "examples/riku.jpg", "examples/sora.jpg"] intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) intf.launch(inline=False)