Spaces:
Runtime error
Runtime error
import streamlit as st | |
import hopsworks | |
import joblib | |
import pandas as pd | |
import numpy as np | |
import folium | |
from streamlit_folium import st_folium, folium_static | |
import json | |
import time | |
from datetime import timedelta, datetime | |
from branca.element import Figure | |
from functions import decode_features, get_model | |
def fancy_header(text, font_size=24): | |
res = f'<span style="color:#ff5f27; font-size: {font_size}px;">{text}</span>' | |
st.markdown(res, unsafe_allow_html=True ) | |
st.markdown( | |
f''' | |
<style> | |
.sidebar .sidebar-content {{ | |
width: 1000px; | |
}} | |
</style> | |
''', | |
unsafe_allow_html=True | |
) | |
st.title('⛅️Air Quality Prediction Project🌩') | |
progress_bar = st.sidebar.header('⚙️ Working Progress') | |
progress_bar = st.sidebar.progress(0) | |
st.write(36 * "-") | |
fancy_header('\n📡 Connecting to Hopsworks Feature Store...') | |
project = hopsworks.login() | |
fs = project.get_feature_store() | |
feature_view = fs.get_feature_view( | |
name = 'air_quality_fv', | |
version = 1 | |
) | |
st.write("Successfully connected!✔️") | |
progress_bar.progress(20) | |
st.write(36 * "-") | |
fancy_header('\n☁️ Getting batch data from Feature Store...') | |
feature_view.init_batch_scoring(training_dataset_version=4) | |
start_date = datetime.now() - timedelta(days=1) | |
start_time = int(start_date.timestamp()) * 1000 | |
X = feature_view.get_batch_data(start_time=start_time) | |
progress_bar.progress(50) | |
latest_date_unix = str(X.date.values[0])[:10] | |
latest_date = time.ctime(int(latest_date_unix)) | |
st.write(f"⏱ Data for {latest_date}") | |
X=X.loc[X['date'] == max (X['date'])] | |
X = X.drop(columns=["date"]).fillna(0) | |
data_to_display = decode_features(X, feature_view=feature_view) | |
progress_bar.progress(60) | |
st.write(36 * "-") | |
fancy_header(f"🗺 Processing the map...") | |
fig = Figure(width=550,height=350) | |
my_map = folium.Map(location=[58, 20], zoom_start=3.71) | |
fig.add_child(my_map) | |
folium.TileLayer('Stamen Terrain').add_to(my_map) | |
folium.TileLayer('Stamen Toner').add_to(my_map) | |
folium.TileLayer('Stamen Water Color').add_to(my_map) | |
folium.TileLayer('cartodbpositron').add_to(my_map) | |
folium.TileLayer('cartodbdark_matter').add_to(my_map) | |
folium.LayerControl().add_to(my_map) | |
data_to_display = data_to_display[[ "temp", "humidity", | |
"conditions", "aqi"]] | |
cities_coords = {("Amsterdam", "Netherlands"): [52.377956, 4.897070] | |
} | |
cols_names_dict = {"temp": "Temperature", | |
"humidity": "Humidity", | |
"conditions": "Conditions", | |
"aqi": "AQI"} | |
data_to_display = data_to_display.rename(columns=cols_names_dict) | |
cols_ = ["Temperature", "Humidity", "AQI"] | |
data_to_display[cols_] = data_to_display[cols_].apply(lambda x: round(x, 1)) | |
for city, country in cities_coords: | |
text = f""" | |
<h4 style="color:green;">{city}</h4> | |
<h5 style="color":"green"> | |
<table style="text-align: right;"> | |
<tr> | |
<th>Country:</th> | |
<td><b>{country}</b></td> | |
</tr> | |
""" | |
for column in data_to_display.columns: | |
text += f""" | |
<tr> | |
<th>{column}:</th> | |
<td>{data_to_display.loc[0][column]}</td> | |
</tr>""" | |
text += """</table> | |
</h5>""" | |
city='Amsterdam' | |
country='Netherlands' | |
folium.Marker( | |
cities_coords[(city, country)], popup=text, tooltip=f"<strong>{city}</strong>" | |
).add_to(my_map) | |
# call to render Folium map in Streamlit | |
folium_static(my_map) | |
progress_bar.progress(80) | |
st.sidebar.write("-" * 36) | |
model = get_model(project=project, | |
model_name="LSTM_model", | |
evaluation_metric="mse", | |
sort_metrics_by="min") | |
X=np.reshape(np.array(X),(len(X),1,len(X.columns))) | |
preds = model.predict(X) | |
cities = [city_tuple[0] for city_tuple in cities_coords.keys()] | |
next_day_date = datetime.today() + timedelta(days=1) | |
last_day_date = datetime.today() + timedelta(days=7) | |
next_day = next_day_date.strftime ('%d/%m/%Y') | |
last_day=last_day_date.strftime ('%d/%m/%Y') | |
days=list() | |
temp_sec=int(latest_date_unix) | |
for i in range(0,7): | |
temp_sec=temp_sec+(3600*24) | |
days.append(time.ctime(temp_sec)[4:-14]) | |
CQ=['Estimated AQI'] | |
df = pd.DataFrame(data=preds,index=CQ, columns=days, dtype=int) | |
st.sidebar.write(df) | |
progress_bar.progress(100) | |
st.button("Re-run") | |
#, columns=[f"AQI Predictions from {next_day} to {last_day}"] |