File size: 1,584 Bytes
7f90d41
4476f61
7f90d41
4476f61
 
7f90d41
4476f61
7f90d41
 
 
 
4476f61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f90d41
 
4476f61
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import gradio as gr
import numpy as np
from PIL import Image
import requests

import hopsworks
import joblib

project = hopsworks.login()
fs = project.get_feature_store()


mr = project.get_model_registry()
model = mr.get_model("iris_modal", version=1)
model_dir = model.download()
model = joblib.load(model_dir + "/iris_model.pkl")


def iris(sepal_length, sepal_width, petal_length, petal_width):
    input_list = []
    input_list.append(sepal_length)
    input_list.append(sepal_width)
    input_list.append(petal_length)
    input_list.append(petal_width)
    # 'res' is a list of predictions returned as the label.
    res = model.predict(np.asarray(input_list).reshape(1, -1)) 
    # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want 
    # the first element.
    flower_url = "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/" + res[0] + ".png"
    img = Image.open(requests.get(flower_url, stream=True).raw)            
    return img
        
demo = gr.Interface(
    fn=iris,
    title="Iris Flower Predictive Analytics",
    description="Experiment with sepal/petal lengths/widths to predict which flower it is.",
    allow_flagging="never",
    inputs=[
        gr.inputs.Number(default=1.0, label="sepal length (cm)"),
        gr.inputs.Number(default=1.0, label="sepal width (cm)"),
        gr.inputs.Number(default=1.0, label="petal length (cm)"),
        gr.inputs.Number(default=1.0, label="petal width (cm)"),
        ],
    outputs=gr.Image(type="pil"))

demo.launch()