Spaces:
Sleeping
Sleeping
Vasudevakrishna
commited on
Commit
β’
1248b58
1
Parent(s):
fe22298
Upload 4 files
Browse files
README.md
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
-
---
|
2 |
-
title: ERAV2 S21 124Model
|
3 |
-
emoji: π
|
4 |
-
colorFrom: green
|
5 |
-
colorTo: blue
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 4.37.2
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
license: mit
|
11 |
-
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
---
|
2 |
+
title: ERAV2 S21 124Model
|
3 |
+
emoji: π
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: blue
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.37.2
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import tiktoken
|
3 |
+
from model import GPT, GPTConfig
|
4 |
+
import gradio as gr
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
device = "cpu"
|
8 |
+
if torch.cuda.is_available():
|
9 |
+
device = "cuda"
|
10 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
11 |
+
device = "mps"
|
12 |
+
|
13 |
+
# STOP
|
14 |
+
num_return_sequences = 1
|
15 |
+
# max_length = 100
|
16 |
+
model = GPT(GPTConfig())
|
17 |
+
model.to(device)
|
18 |
+
model.load_state_dict(torch.load('./checkpoints/final_model.pth', map_location=device))
|
19 |
+
|
20 |
+
# Set the model to evaluation mode
|
21 |
+
model.eval()
|
22 |
+
|
23 |
+
|
24 |
+
def generate(text, max_length):
|
25 |
+
enc = tiktoken.get_encoding("gpt2")
|
26 |
+
tokens = enc.encode(text)
|
27 |
+
tokens = torch.tensor(tokens, dtype= torch.long) # (len,) #check tiktoken app
|
28 |
+
tokens = tokens.unsqueeze(0).repeat(num_return_sequences, 1) # (1, len)
|
29 |
+
x = tokens.to(device)
|
30 |
+
|
31 |
+
while x.size(1) < max_length:
|
32 |
+
# forward the model to get the logits
|
33 |
+
with torch.no_grad():
|
34 |
+
logits = model(x)[0] # (B, T, vocab_size)
|
35 |
+
# take the logits at the last position
|
36 |
+
logits = logits[:, -1, :] # (B, vocab_size)
|
37 |
+
# get the probabilities
|
38 |
+
probs = F.softmax(logits, dim=-1)
|
39 |
+
# do top-k sampling of 50 (huggingface pipeline default)
|
40 |
+
# topk_probs here becomes (5, 50), topk_indices is (5, 50)
|
41 |
+
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
|
42 |
+
# select a token from the top-k probabilities
|
43 |
+
# note: multinomial does not demand the input to sum to 1
|
44 |
+
ix = torch.multinomial(topk_probs, 1) # (B, 1)
|
45 |
+
# gather the corresponding indices
|
46 |
+
xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
|
47 |
+
# append to the sequence
|
48 |
+
x = torch.cat((x, xcol), dim=1)
|
49 |
+
|
50 |
+
# print the generated text
|
51 |
+
for i in range(num_return_sequences):
|
52 |
+
tokens = x[i, :max_length].tolist()
|
53 |
+
decoded = enc.decode(tokens)
|
54 |
+
return decoded
|
55 |
+
|
56 |
+
title = "Shakespeare Poem generation using GPT - 121M Model."
|
57 |
+
description = "A simple Gradio interface to demo genaration of shakespeare poem."
|
58 |
+
examples = [["Let us kill him, and we'll have corn at our own price."],
|
59 |
+
["Would you proceed especially against Caius Marcius?"],
|
60 |
+
["Nay, but speak not maliciously."]],
|
61 |
+
demo = gr.Interface(
|
62 |
+
generate,
|
63 |
+
inputs=[
|
64 |
+
gr.TextArea(label="Enter text"),
|
65 |
+
gr.Slider(10, 100, value = 10, step=1, label="Token Length"),
|
66 |
+
],
|
67 |
+
outputs=[
|
68 |
+
gr.TextArea(label="Generated Text")
|
69 |
+
],
|
70 |
+
title=title,
|
71 |
+
description=description,
|
72 |
+
examples=examples,
|
73 |
+
cache_examples=False,
|
74 |
+
live=True
|
75 |
+
)
|
76 |
+
demo.launch()
|
model.py
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# GPT-3 Paper
|
2 |
+
# add cosing delay
|
3 |
+
import os
|
4 |
+
import math
|
5 |
+
import time
|
6 |
+
import inspect
|
7 |
+
from dataclasses import dataclass
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
from torch.nn import functional as F
|
11 |
+
|
12 |
+
|
13 |
+
class CausalSelfAttention(nn.Module):
|
14 |
+
|
15 |
+
def __init__(self, config):
|
16 |
+
super().__init__()
|
17 |
+
assert config.n_embd % config.n_head == 0
|
18 |
+
# key, query, value projections for all heads, but in a batch
|
19 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
20 |
+
# output projection
|
21 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
22 |
+
self.c_proj.NANGPT_SCALE_INIT = 1
|
23 |
+
# regularization
|
24 |
+
self.n_head = config.n_head
|
25 |
+
self.n_embd = config.n_embd
|
26 |
+
self.register_buffer(
|
27 |
+
"bias",
|
28 |
+
torch.tril(torch.ones(config.block_size, config.block_size)).view(
|
29 |
+
1, 1, config.block_size, config.block_size
|
30 |
+
),
|
31 |
+
)
|
32 |
+
|
33 |
+
def forward(self, x):
|
34 |
+
B, T, C = (
|
35 |
+
x.size()
|
36 |
+
) # batch size, sequence length, embedding dimensionality (n_embd)
|
37 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
38 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
39 |
+
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
40 |
+
qkv = self.c_attn(x)
|
41 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
42 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(
|
43 |
+
1, 2
|
44 |
+
) # (B, nh, T, hs)
|
45 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(
|
46 |
+
1, 2
|
47 |
+
) # (B, nh, T, hs)
|
48 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(
|
49 |
+
1, 2
|
50 |
+
) # (B, nh, T, hs)
|
51 |
+
|
52 |
+
# att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
53 |
+
# att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
54 |
+
# att = F.softmax(att, dim=-1)
|
55 |
+
# y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
56 |
+
|
57 |
+
y = F.scaled_dot_product_attention(q, k, v, is_causal=True) # Flash attention
|
58 |
+
|
59 |
+
y = (
|
60 |
+
y.transpose(1, 2).contiguous().view(B, T, C)
|
61 |
+
) # re-assemble all head outputs side by side
|
62 |
+
# output projection
|
63 |
+
y = self.c_proj(y)
|
64 |
+
return y
|
65 |
+
|
66 |
+
|
67 |
+
class MLP(nn.Module):
|
68 |
+
|
69 |
+
def __init__(self, config):
|
70 |
+
super().__init__()
|
71 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
72 |
+
self.gelu = nn.GELU(approximate="tanh")
|
73 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
74 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
75 |
+
|
76 |
+
def forward(self, x):
|
77 |
+
x = self.c_fc(x)
|
78 |
+
x = self.gelu(x)
|
79 |
+
x = self.c_proj(x)
|
80 |
+
return x
|
81 |
+
|
82 |
+
|
83 |
+
class Block(nn.Module):
|
84 |
+
|
85 |
+
def __init__(self, config):
|
86 |
+
super().__init__()
|
87 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
88 |
+
self.attn = CausalSelfAttention(config)
|
89 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
90 |
+
self.mlp = MLP(config)
|
91 |
+
|
92 |
+
def forward(self, x):
|
93 |
+
x = x + self.attn(self.ln_1(x))
|
94 |
+
x = x + self.mlp(self.ln_2(x))
|
95 |
+
return x
|
96 |
+
|
97 |
+
|
98 |
+
@dataclass
|
99 |
+
class GPTConfig:
|
100 |
+
block_size: int = 1024 # max sequence length
|
101 |
+
vocab_size: int = (
|
102 |
+
50304 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
103 |
+
)
|
104 |
+
n_layer: int = 12 # number of layers
|
105 |
+
n_head: int = 12 # number of heads
|
106 |
+
n_embd: int = 768 # embedding dimension
|
107 |
+
|
108 |
+
|
109 |
+
class GPT(nn.Module):
|
110 |
+
|
111 |
+
def __init__(self, config):
|
112 |
+
super().__init__()
|
113 |
+
self.config = config
|
114 |
+
|
115 |
+
self.transformer = nn.ModuleDict(
|
116 |
+
dict(
|
117 |
+
wte=nn.Embedding(config.vocab_size, config.n_embd),
|
118 |
+
wpe=nn.Embedding(config.block_size, config.n_embd),
|
119 |
+
h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
120 |
+
ln_f=nn.LayerNorm(config.n_embd),
|
121 |
+
)
|
122 |
+
)
|
123 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
124 |
+
|
125 |
+
# weight sharing
|
126 |
+
self.transformer.wte.weight = self.lm_head.weight
|
127 |
+
|
128 |
+
# weight initialization
|
129 |
+
self.apply(self._init_weights)
|
130 |
+
|
131 |
+
def _init_weights(self, module):
|
132 |
+
if isinstance(module, nn.Linear):
|
133 |
+
std = 0.02
|
134 |
+
if hasattr(module, "NANGPT_SCALE_INIT"):
|
135 |
+
std *= (2 * self.config.n_layer) ** -0.5
|
136 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
|
137 |
+
if module.bias is not None:
|
138 |
+
torch.nn.init.zeros_(module.bias)
|
139 |
+
elif isinstance(module, nn.Embedding):
|
140 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
141 |
+
|
142 |
+
def forward(self, idx, targets=None):
|
143 |
+
# idx is of shape (B, T)
|
144 |
+
B, T = idx.size()
|
145 |
+
assert (
|
146 |
+
T <= self.config.block_size
|
147 |
+
), f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
148 |
+
# forward the token and posisition embeddings
|
149 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
|
150 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
151 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
|
152 |
+
x = tok_emb + pos_emb
|
153 |
+
# forward the blocks of the transformer
|
154 |
+
for block in self.transformer.h:
|
155 |
+
x = block(x)
|
156 |
+
# forward the final layernorm and the classifier
|
157 |
+
x = self.transformer.ln_f(x)
|
158 |
+
logits = self.lm_head(x) # (B, T, vocab_size)
|
159 |
+
loss = None
|
160 |
+
if targets is not None:
|
161 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
162 |
+
return logits, loss
|
163 |
+
|
164 |
+
@classmethod
|
165 |
+
def from_pretrained(cls, model_type):
|
166 |
+
"""Loads pretrained GPT-2 model weights from huggingface"""
|
167 |
+
assert model_type in {"gpt2", "gpt2-medium", "gpt2-large", "gpt2-xl"}
|
168 |
+
from transformers import GPT2LMHeadModel
|
169 |
+
|
170 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
171 |
+
|
172 |
+
# n_layer, n_head and n_embd are determined from model_type
|
173 |
+
config_args = {
|
174 |
+
"gpt2": dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
175 |
+
"gpt2-medium": dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
176 |
+
"gpt2-large": dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
177 |
+
"gpt2-xl": dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
178 |
+
}[model_type]
|
179 |
+
config_args["vocab_size"] = 50257 # always 50257 for GPT model checkpoints
|
180 |
+
config_args["block_size"] = 1024 # always 1024 for GPT model checkpoints
|
181 |
+
# create a from-scratch initialized minGPT model
|
182 |
+
config = GPTConfig(**config_args)
|
183 |
+
model = GPT(config)
|
184 |
+
sd = model.state_dict()
|
185 |
+
sd_keys = sd.keys()
|
186 |
+
sd_keys = [
|
187 |
+
k for k in sd_keys if not k.endswith(".attn.bias")
|
188 |
+
] # discard this mask / buffer, not a param
|
189 |
+
|
190 |
+
# init a huggingface/transformers model
|
191 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
192 |
+
sd_hf = model_hf.state_dict()
|
193 |
+
|
194 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
195 |
+
sd_keys_hf = sd_hf.keys()
|
196 |
+
sd_keys_hf = [
|
197 |
+
k for k in sd_keys_hf if not k.endswith(".attn.masked_bias")
|
198 |
+
] # ignore these, just a buffer
|
199 |
+
sd_keys_hf = [
|
200 |
+
k for k in sd_keys_hf if not k.endswith(".attn.bias")
|
201 |
+
] # same, just the mask (buffer)
|
202 |
+
transposed = [
|
203 |
+
"attn.c_attn.weight",
|
204 |
+
"attn.c_proj.weight",
|
205 |
+
"mlp.c_fc.weight",
|
206 |
+
"mlp.c_proj.weight",
|
207 |
+
]
|
208 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
209 |
+
# this means that we have to transpose these weights when we import them
|
210 |
+
assert len(sd_keys_hf) == len(
|
211 |
+
sd_keys
|
212 |
+
), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
213 |
+
for k in sd_keys_hf:
|
214 |
+
if any(k.endswith(w) for w in transposed):
|
215 |
+
# special treatment for the Conv1D weights we need to transpose
|
216 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
217 |
+
with torch.no_grad():
|
218 |
+
sd[k].copy_(sd_hf[k].t())
|
219 |
+
else:
|
220 |
+
# vanilla copy over the other parameters
|
221 |
+
assert sd_hf[k].shape == sd[k].shape
|
222 |
+
with torch.no_grad():
|
223 |
+
sd[k].copy_(sd_hf[k])
|
224 |
+
|
225 |
+
return model
|
226 |
+
|
227 |
+
def configure_optimizers(self, weight_decay, learning_rate, device_type):
|
228 |
+
# start with all of the candidate parameters (that require grad)
|
229 |
+
param_dict = {pn: p for pn, p in self.named_parameters()}
|
230 |
+
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
|
231 |
+
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
|
232 |
+
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
|
233 |
+
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
|
234 |
+
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
|
235 |
+
optim_groups = [
|
236 |
+
{"params": decay_params, "weight_decay": weight_decay},
|
237 |
+
{"params": nodecay_params, "weight_decay": 0.0},
|
238 |
+
]
|
239 |
+
num_decay_params = sum(p.numel() for p in decay_params)
|
240 |
+
num_nodecay_params = sum(p.numel() for p in nodecay_params)
|
241 |
+
|
242 |
+
print(
|
243 |
+
f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters"
|
244 |
+
)
|
245 |
+
print(
|
246 |
+
f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters"
|
247 |
+
)
|
248 |
+
# Create AdamW optimizer and use the fused version if it is available
|
249 |
+
fused_available = "fused" in inspect.signature(torch.optim.AdamW).parameters
|
250 |
+
use_fused = fused_available and device_type == "cuda"
|
251 |
+
|
252 |
+
print(f"using fused AdamW: {use_fused}")
|
253 |
+
optimizer = torch.optim.AdamW(
|
254 |
+
optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused
|
255 |
+
)
|
256 |
+
return optimizer
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
numpy
|
3 |
+
dataclasses
|
4 |
+
tiktoken
|