Spaces:
Sleeping
Sleeping
Vasudevakrishna
commited on
Commit
•
f140a8c
1
Parent(s):
3588d1c
Create utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gc
|
2 |
+
import numpy as np
|
3 |
+
import numpy
|
4 |
+
import torch
|
5 |
+
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
|
6 |
+
|
7 |
+
from matplotlib import pyplot as plt
|
8 |
+
from pathlib import Path
|
9 |
+
from PIL import Image
|
10 |
+
from torch import autocast
|
11 |
+
from torchvision import transforms as tfms
|
12 |
+
from tqdm.auto import tqdm
|
13 |
+
from transformers import CLIPTextModel, CLIPTokenizer, logging
|
14 |
+
import os
|
15 |
+
from diffusers import StableDiffusionPipeline, DiffusionPipeline
|
16 |
+
|
17 |
+
# large or small model
|
18 |
+
|
19 |
+
# configurations
|
20 |
+
height, width = 512, 512
|
21 |
+
guidance_scale = 8
|
22 |
+
custom_loss_scale = 200
|
23 |
+
batch_size = 1
|
24 |
+
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
25 |
+
|
26 |
+
|
27 |
+
pretrained_model_name_or_path = "CompVis/stable-diffusion-v1-4"
|
28 |
+
pipe = DiffusionPipeline.from_pretrained(
|
29 |
+
pretrained_model_name_or_path,
|
30 |
+
torch_dtype=torch.float32
|
31 |
+
).to(torch_device)
|
32 |
+
|
33 |
+
# Load SD concepts
|
34 |
+
sdconcepts = ['<morino-hon>', '<space-style>', '<tesla-bot>', '<midjourney-style>', ' <hanfu-anime-style>']
|
35 |
+
|
36 |
+
pipe.load_textual_inversion("sd-concepts-library/morino-hon-style")
|
37 |
+
pipe.load_textual_inversion("sd-concepts-library/space-style")
|
38 |
+
pipe.load_textual_inversion("sd-concepts-library/tesla-bot")
|
39 |
+
pipe.load_textual_inversion("sd-concepts-library/midjourney-style")
|
40 |
+
pipe.load_textual_inversion("sd-concepts-library/hanfu-anime-style")
|
41 |
+
|
42 |
+
# define seeds
|
43 |
+
seed_list = [1, 2, 3, 4, 5]
|
44 |
+
|
45 |
+
|
46 |
+
def custom_loss(images):
|
47 |
+
|
48 |
+
# Gradient loss
|
49 |
+
gradient_x = torch.abs(images[:, :, :, :-1] - images[:, :, :, 1:]).mean()
|
50 |
+
gradient_y = torch.abs(images[:, :, :-1, :] - images[:, :, 1:, :]).mean()
|
51 |
+
error = gradient_x + gradient_y
|
52 |
+
#Variational loss
|
53 |
+
# diff_x = torch.abs(images[:, :, :, :-1] - images[:, :, :, 1:])
|
54 |
+
# diff_y = torch.abs(images[:, :, :-1, :] - images[:, :, 1:, :])
|
55 |
+
# error = diff_x.mean() + diff_y.mean()
|
56 |
+
|
57 |
+
return error
|
58 |
+
|
59 |
+
def latents_to_pil(latents):
|
60 |
+
# bath of latents -> list of images
|
61 |
+
latents = (1 / 0.18215) * latents
|
62 |
+
with torch.no_grad():
|
63 |
+
image = pipe.vae.decode(latents).sample
|
64 |
+
image = (image / 2 + 0.5).clamp(0, 1) # 0 to 1
|
65 |
+
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
|
66 |
+
images = (image * 255).round().astype("uint8")
|
67 |
+
pil_images = [Image.fromarray(image) for image in images]
|
68 |
+
return pil_images
|
69 |
+
|
70 |
+
def generate_latents(prompts, num_inference_steps, seed_nums, loss_apply=False):
|
71 |
+
|
72 |
+
generator = torch.manual_seed(seed_nums)
|
73 |
+
|
74 |
+
# scheduler
|
75 |
+
scheduler = LMSDiscreteScheduler(beta_start = 0.00085, beta_end = 0.012, beta_schedule = "scaled_linear", num_train_timesteps = 1000)
|
76 |
+
scheduler.set_timesteps(num_inference_steps)
|
77 |
+
scheduler.timesteps = scheduler.timesteps.to(torch.float32)
|
78 |
+
|
79 |
+
# text embeddings of the prompt
|
80 |
+
text_input = pipe.tokenizer(prompts, padding='max_length', max_length = pipe.tokenizer.model_max_length, truncation= True, return_tensors="pt")
|
81 |
+
input_ids = text_input.input_ids.to(torch_device)
|
82 |
+
|
83 |
+
with torch.no_grad():
|
84 |
+
text_embeddings = pipe.text_encoder(text_input.input_ids.to(torch_device))[0]
|
85 |
+
|
86 |
+
max_length = text_input.input_ids.shape[-1]
|
87 |
+
uncond_input = pipe.tokenizer(
|
88 |
+
[""] * batch_size, padding="max_length", max_length= max_length, return_tensors="pt"
|
89 |
+
)
|
90 |
+
|
91 |
+
with torch.no_grad():
|
92 |
+
uncond_embeddings = pipe.text_encoder(uncond_input.input_ids.to(torch_device))[0]
|
93 |
+
|
94 |
+
text_embeddings = torch.cat([uncond_embeddings,text_embeddings]) # 2,77,768
|
95 |
+
|
96 |
+
# random latent
|
97 |
+
latents = torch.randn(
|
98 |
+
(batch_size, pipe.unet.config.in_channels, height// 8, width //8),
|
99 |
+
generator = generator,
|
100 |
+
) .to(torch.float16)
|
101 |
+
|
102 |
+
|
103 |
+
latents = latents.to(torch_device)
|
104 |
+
latents = latents * scheduler.init_noise_sigma
|
105 |
+
|
106 |
+
for i, t in tqdm(enumerate(scheduler.timesteps), total = len(scheduler.timesteps)):
|
107 |
+
|
108 |
+
latent_model_input = torch.cat([latents] * 2)
|
109 |
+
sigma = scheduler.sigmas[i]
|
110 |
+
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
111 |
+
|
112 |
+
with torch.no_grad():
|
113 |
+
noise_pred = pipe.unet(latent_model_input.to(torch.float32), t, encoder_hidden_states=text_embeddings)["sample"]
|
114 |
+
#noise_pred = pipe.unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
|
115 |
+
|
116 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
117 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
118 |
+
|
119 |
+
if (loss_apply and i%5 == 0):
|
120 |
+
|
121 |
+
latents = latents.detach().requires_grad_()
|
122 |
+
#latents_x0 = scheduler.step(noise_pred,t, latents).pred_original_sample # this line does not work
|
123 |
+
latents_x0 = latents - sigma * noise_pred
|
124 |
+
|
125 |
+
# use vae to decode the image
|
126 |
+
denoised_images = pipe.vae.decode((1/ 0.18215) * latents_x0).sample / 2 + 0.5 # range(0,1)
|
127 |
+
|
128 |
+
loss = custom_loss(denoised_images) * custom_loss_scale
|
129 |
+
print(f"Custom gradient loss {loss}")
|
130 |
+
|
131 |
+
cond_grad = torch.autograd.grad(loss, latents)[0]
|
132 |
+
latents = latents.detach() - cond_grad * sigma**2
|
133 |
+
|
134 |
+
latents = scheduler.step(noise_pred,t, latents).prev_sample
|
135 |
+
|
136 |
+
return latents
|
137 |
+
|
138 |
+
|
139 |
+
# Function to convert PIL images to NumPy arrays
|
140 |
+
def pil_to_np(image):
|
141 |
+
return np.array(image)
|
142 |
+
|
143 |
+
def generate_gradio_images(prompt, num_inference_steps, loss_flag = False):
|
144 |
+
# after loss is applied
|
145 |
+
latents_list = []
|
146 |
+
for seed_no, sd in zip(seed_list, sdconcepts):
|
147 |
+
prompts = [f'{prompt} {sd}']
|
148 |
+
latents = generate_latents(prompts,num_inference_steps, seed_no, loss_apply=loss_flag)
|
149 |
+
latents_list.append(latents)
|
150 |
+
# show all
|
151 |
+
latents_list = torch.vstack(latents_list)
|
152 |
+
images = latents_to_pil(latents_list)
|
153 |
+
return images
|