VeyVey commited on
Commit
7318a93
1 Parent(s): f3ca33a

Create app.y

Browse files
Files changed (1) hide show
  1. app.y +38 -0
app.y ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ # Load the Hugging Face model for income prediction
5
+ model = pipeline("text-classification", model="distilbert-base-uncased-finetuned-sst-2-english")
6
+
7
+ def predict_income(features):
8
+ # Preprocess the input features
9
+ job_title = features['job_title']
10
+ years_of_experience = features['years_of_experience']
11
+ education_level = features['education_level']
12
+
13
+ # Combine the input features into a text string
14
+ input_text = f"Job Title: {job_title}\nYears of Experience: {years_of_experience}\nEducation Level: {education_level}"
15
+
16
+ # Use the Hugging Face model to predict the income
17
+ prediction = model(input_text)[0]
18
+
19
+ # Return the predicted income
20
+ return prediction['label']
21
+
22
+ # Define the input fields for the Gradio interface
23
+ job_title_input = gr.inputs.Textbox(label="Job Title")
24
+ years_of_experience_input = gr.inputs.Number(label="Years of Experience")
25
+ education_level_input = gr.inputs.Dropdown(label="Education Level", choices=["High School", "Bachelor's Degree", "Master's Degree", "PhD"])
26
+
27
+ # Define the output field for the Gradio interface
28
+ income_output = gr.outputs.Textbox(label="Predicted Income")
29
+
30
+ # Create the Gradio interface
31
+ interface = gr.Interface(fn=predict_income,
32
+ inputs=[job_title_input, years_of_experience_input, education_level_input],
33
+ outputs=income_output,
34
+ title="Income Prediction",
35
+ description="Predict income for female and male employees based on job-related features.")
36
+
37
+ # Launch the Gradio interface
38
+ interface.launch()