Victorano commited on
Commit
ca502de
1 Parent(s): 90b09d1

Gradio Launch Working Fine

Browse files
app.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ import torch
4
+ from model import create_effnetb2_model
5
+ from timeit import default_timer as timer
6
+ from typing import Tuple, Dict
7
+
8
+ with open("class_names.txt", "r") as f:
9
+ class_names = [food_name.strip() for food_name in f]
10
+
11
+ effnetb2, effnetb2_transforms = create_effnetb2_model()
12
+
13
+ effnetb2.load_state_dict(
14
+ torch.load(
15
+ f="effnetb2_food101_complete_dataset.pth",
16
+ map_location=torch.device("cpu"),
17
+ weights_only=True
18
+ )
19
+ )
20
+
21
+
22
+ def predict(img) -> Tuple[Dict, float]:
23
+ start_time = timer()
24
+ img = effnetb2_transforms(img).unsqueeze(0)
25
+
26
+ effnetb2.eval()
27
+ with torch.inference_mode():
28
+ pred_probs = torch.softmax(effnetb2(img), dim=1)
29
+
30
+ # create a prediction label in gradio format
31
+ pred_labels_and_probs = {class_names[i]: float(
32
+ pred_probs[0][i]) for i in range(len(class_names))}
33
+
34
+ pred_time = round(timer() - start_time)
35
+
36
+ return pred_labels_and_probs, pred_time
37
+
38
+
39
+ # Create title, description and article strings
40
+ title = "FoodVision Big 🍔👁"
41
+ description = "An EfficientNetB2 feature extractor computer vision model to classify images of food into [101 different classes](https://github.com/Victoran0/foodvision-bigdataset/demos/foodvision_big/class_names.txt).."
42
+ article = "You can find the full source code at (https://github.com/Victoran0/foodvision-bigdataset)."
43
+
44
+ example_list = [["examples/" + example] for example in os.listdir("examples")]
45
+
46
+ # Create Gradio Interface
47
+ demo = gr.Interface(
48
+ fn=predict,
49
+ inputs=gr.Image(type="pil"),
50
+ outputs=[
51
+ gr.Label(num_top_classes=5, label="Predictions"),
52
+ gr.Number(label="Prediction time (s)")
53
+ ],
54
+ examples=example_list,
55
+ title=title,
56
+ description=description,
57
+ article=article
58
+ )
59
+
60
+ demo.launch()
class_names.txt ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ apple_pie
2
+ baby_back_ribs
3
+ baklava
4
+ beef_carpaccio
5
+ beef_tartare
6
+ beet_salad
7
+ beignets
8
+ bibimbap
9
+ bread_pudding
10
+ breakfast_burrito
11
+ bruschetta
12
+ caesar_salad
13
+ cannoli
14
+ caprese_salad
15
+ carrot_cake
16
+ ceviche
17
+ cheese_plate
18
+ cheesecake
19
+ chicken_curry
20
+ chicken_quesadilla
21
+ chicken_wings
22
+ chocolate_cake
23
+ chocolate_mousse
24
+ churros
25
+ clam_chowder
26
+ club_sandwich
27
+ crab_cakes
28
+ creme_brulee
29
+ croque_madame
30
+ cup_cakes
31
+ deviled_eggs
32
+ donuts
33
+ dumplings
34
+ edamame
35
+ eggs_benedict
36
+ escargots
37
+ falafel
38
+ filet_mignon
39
+ fish_and_chips
40
+ foie_gras
41
+ french_fries
42
+ french_onion_soup
43
+ french_toast
44
+ fried_calamari
45
+ fried_rice
46
+ frozen_yogurt
47
+ garlic_bread
48
+ gnocchi
49
+ greek_salad
50
+ grilled_cheese_sandwich
51
+ grilled_salmon
52
+ guacamole
53
+ gyoza
54
+ hamburger
55
+ hot_and_sour_soup
56
+ hot_dog
57
+ huevos_rancheros
58
+ hummus
59
+ ice_cream
60
+ lasagna
61
+ lobster_bisque
62
+ lobster_roll_sandwich
63
+ macaroni_and_cheese
64
+ macarons
65
+ miso_soup
66
+ mussels
67
+ nachos
68
+ omelette
69
+ onion_rings
70
+ oysters
71
+ pad_thai
72
+ paella
73
+ pancakes
74
+ panna_cotta
75
+ peking_duck
76
+ pho
77
+ pizza
78
+ pork_chop
79
+ poutine
80
+ prime_rib
81
+ pulled_pork_sandwich
82
+ ramen
83
+ ravioli
84
+ red_velvet_cake
85
+ risotto
86
+ samosa
87
+ sashimi
88
+ scallops
89
+ seaweed_salad
90
+ shrimp_and_grits
91
+ spaghetti_bolognese
92
+ spaghetti_carbonara
93
+ spring_rolls
94
+ steak
95
+ strawberry_shortcake
96
+ sushi
97
+ tacos
98
+ takoyaki
99
+ tiramisu
100
+ tuna_tartare
101
+ waffles
effnetb2_food101_complete_dataset.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f297139999ef254277ff976d5b901e8ce3e9135b6837b70494905749f5e1410
3
+ size 31839930
examples/pizza.jpg ADDED
model.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torchvision
3
+ from torch import nn
4
+
5
+
6
+ def create_effnetb2_model(num_classes: int = 101, seed: int = 42):
7
+ weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
8
+ effnetb2_transforms = weights.transforms()
9
+ effnetb2 = torchvision.models.efficientnet_b2(weights=weights)
10
+
11
+ for param in effnetb2.parameters():
12
+ param.requires_grad = False
13
+
14
+ torch.manual_seed(seed=seed)
15
+ effnetb2.classifier = nn.Sequential(
16
+ nn.Dropout(p=0.3, inplace=True),
17
+ nn.Linear(in_features=1408, out_features=num_classes)
18
+ )
19
+
20
+ return effnetb2, effnetb2_transforms
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch==2.4.1
2
+ torchvision==0.19.1
3
+ gradio==4.44.0