import gradio as gr import os import torch from model import create_effnetb2_model from timeit import default_timer as timer from typing import Tuple, Dict with open("class_names.txt", "r") as f: class_names = [food_name.strip() for food_name in f] effnetb2, effnetb2_transforms = create_effnetb2_model() effnetb2.load_state_dict( torch.load( f="effnetb2_food101_complete_dataset.pth", map_location=torch.device("cpu"), weights_only=True ) ) def predict(img) -> Tuple[Dict, float]: start_time = timer() img = effnetb2_transforms(img).unsqueeze(0) effnetb2.eval() with torch.inference_mode(): pred_probs = torch.softmax(effnetb2(img), dim=1) # create a prediction label in gradio format pred_labels_and_probs = {class_names[i]: float( pred_probs[0][i]) for i in range(len(class_names))} pred_time = round(timer() - start_time) return pred_labels_and_probs, pred_time # Create title, description and article strings title = "FoodVision Big 🍔👁" description = "An EfficientNetB2 feature extractor computer vision model to classify images of food into [101 different classes](https://github.com/Victoran0/foodvision-bigdataset/demos/foodvision_big/class_names.txt).." article = "You can find the full source code at (https://github.com/Victoran0/foodvision-bigdataset)." example_list = [["examples/" + example] for example in os.listdir("examples")] # Create Gradio Interface demo = gr.Interface( fn=predict, inputs=gr.Image(type="pil"), outputs=[ gr.Label(num_top_classes=5, label="Predictions"), gr.Number(label="Prediction time (s)") ], examples=example_list, title=title, description=description, article=article ) demo.launch()