import torch import torchvision from torch import nn def create_effnetb2_model(num_classes: int = 101, seed: int = 42): weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT effnetb2_transforms = weights.transforms() effnetb2 = torchvision.models.efficientnet_b2(weights=weights) for param in effnetb2.parameters(): param.requires_grad = False torch.manual_seed(seed=seed) effnetb2.classifier = nn.Sequential( nn.Dropout(p=0.3, inplace=True), nn.Linear(in_features=1408, out_features=num_classes) ) return effnetb2, effnetb2_transforms