import gradio as gr import numpy as np from PIL import Image import requests import hopsworks import joblib project = hopsworks.login(api_key_value="4CY1rwa8iz8Yu6gG.TwayrYmsX4GQfhSp3LNKYTLvyFMfqAvnzNUQp5ae9K5HhfYxb5mcnLAutm1K18zV") fs = project.get_feature_store() mr = project.get_model_registry() model = mr.get_model("titanic_modal", version=1) model_dir = model.download() model = joblib.load(model_dir + "/titanic_model.pkl") def passenger(pclass, sex, family, groupedage): input_list = [] input_list.append(pclass) input_list.append(sex) input_list.append(family) input_list.append(groupedage) # 'res' is a list of predictions returned as the label. res = model.predict(np.asarray(input_list).reshape(1, -1)) # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want # the first element. if res[0] == 1: passenger_url = "https://cdn.pixabay.com/photo/2018/08/02/18/58/survival-3580200_960_720.png" else: passenger_url = "https://pngimg.com/uploads/death/death_PNG55.png" img = Image.open(requests.get(passenger_url, stream=True).raw) return img #return res[0] demo_titanic = gr.Interface( fn=passenger, title="Titanic Predictive Analytics", description="Experiment to predict if a passenger survived or died in the titanic", allow_flagging="never", inputs=[ gr.inputs.Number(default=1.0, label="Pclass (Min:1, Max=3"), gr.inputs.Number(default=1.0, label="Sex (Female:0 and Male:1)"), gr.inputs.Number(default=1.0, label="Family (Number of family members in the boat[0,7])"), gr.inputs.Number(default=1.0, label="Age (Child:0, Adult:1 and Old:2)") ], outputs=gr.Image(type="pil")) #outputs=gr.Label(num_top_classes=2) demo_titanic.launch()