razent commited on
Commit
847634c
1 Parent(s): 58d943c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -14
app.py CHANGED
@@ -1,14 +1,10 @@
1
- import streamlit as st
2
- from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
3
-
4
- tokenizer = AutoTokenizer.from_pretrained("VietAI/vit5-large-vietnews-summarization")
5
-
6
- model = AutoModelForSeq2SeqLM.from_pretrained("VietAI/vit5-large-vietnews-summarization")
7
 
8
  def preprocess(inp):
9
  text = "vietnews: " + inp + " </s>"
10
- features = tokenizer(text, return_tensors="pt")
11
- return features['input_ids'], features['attention_mask']
12
  def predict(input_ids, attention_mask):
13
  outputs = model.generate(
14
  input_ids=input_ids, attention_mask=attention_mask,
@@ -18,10 +14,29 @@ def predict(input_ids, attention_mask):
18
  res = tokenizer.batch_decode(outputs, skip_special_tokens=True, clean_up_tokenization_spaces=True)[0]
19
  return res
20
 
21
- if __name__ == '__main__':
22
- st.title("ViT5 News Abstractive Summarization")
23
- with st.container():
24
- txt = st.text_area('Enter a long Vietnamese document...', ' ')
25
- inp_ids, attn_mask = preprocess(txt)
26
- st.write('Summary:', predict(inp_ids, attn_mask))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
 
1
+ import gradio as gr
2
+ from gradio.mix import Parallel, Series
 
 
 
 
3
 
4
  def preprocess(inp):
5
  text = "vietnews: " + inp + " </s>"
6
+ return text
7
+
8
  def predict(input_ids, attention_mask):
9
  outputs = model.generate(
10
  input_ids=input_ids, attention_mask=attention_mask,
 
14
  res = tokenizer.batch_decode(outputs, skip_special_tokens=True, clean_up_tokenization_spaces=True)[0]
15
  return res
16
 
17
+
18
+ extractor = gr.Interface(preprocess, 'text', 'text')
19
+ summarizer = gr.Interface.load("VietAI/vit5-large-vietnews-summarization")
20
+
21
+ sample_url = [['VietAI là tổ chức phi lợi nhuận với sứ mệnh ươm mầm tài năng về trí tuệ nhân tạo và xây dựng một cộng đồng các chuyên gia trong lĩnh vực trí tuệ nhân tạo đẳng cấp quốc tế tại Việt Nam.'],
22
+ ]
23
+
24
+ desc = '''
25
+ Abstractive Summarization on Vietnamese News
26
+ '''
27
+
28
+ iface = Series(extractor, summarizer,
29
+ inputs = gr.inputs.Textbox(
30
+ lines = 5,
31
+ label = 'Enter an article...'
32
+ ),
33
+ outputs = 'text',
34
+ title = 'Vi(etnamese)T5 Abstractive Summarization',
35
+ theme = 'grass',
36
+ layout = 'horizontal',
37
+ description = desc,
38
+ examples=sample_url)
39
+
40
+ iface.launch()
41
+
42