# Part of the code is from: fashn-ai/sapiens-body-part-segmentation import os import gradio as gr import numpy as np import spaces import torch from gradio.themes.utils import sizes from PIL import Image from torchvision import transforms from utils.vis_utils import get_palette, visualize_mask_with_overlay from config import SAPIENS_LITE_MODELS_PATH if torch.cuda.is_available() and torch.cuda.get_device_properties(0).major >= 8: torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True CHECKPOINTS_DIR = "checkpoints" def load_model(checkpoint_name: str): checkpoint_path = os.path.join(CHECKPOINTS_DIR, CHECKPOINTS[checkpoint_name]) model = torch.jit.load(checkpoint_path) model.eval() model.to("cuda") return model #MODELS = {name: load_model(name) for name in CHECKPOINTS.keys()} @torch.inference_mode() def run_model(model, input_tensor, height, width): output = model(input_tensor) output = torch.nn.functional.interpolate(output, size=(height, width), mode="bilinear", align_corners=False) _, preds = torch.max(output, 1) return preds transform_fn = transforms.Compose( [ transforms.Resize((1024, 768)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ] ) @spaces.GPU def segment(image: Image.Image, model_name: str) -> Image.Image: input_tensor = transform_fn(image).unsqueeze(0).to("cuda") model = MODELS[model_name] preds = run_model(model, input_tensor, height=image.height, width=image.width) mask = preds.squeeze(0).cpu().numpy() mask_image = Image.fromarray(mask.astype("uint8")) blended_image = visualize_mask_with_overlay(image, mask_image, LABELS_TO_IDS, alpha=0.5) return blended_image def update_model_choices(task): model_choices = list(SAPIENS_LITE_MODELS_PATH[task.lower()].keys()) return gr.Dropdown(choices=model_choices, value=model_choices[0] if model_choices else None) with gr.Blocks() as demo: gr.Markdown("# Sapiens Arena πŸ€ΈπŸ½β€β™‚οΈ - WIP devmode- Not yet available") with gr.Tabs(): with gr.TabItem('Image'): with gr.Row(): with gr.Column(): input_image = gr.Image(label="Input Image", type="pil", format="png") select_task = gr.Radio( ["Seg", "Pose", "Depth", "Normal"], label="Task", info="Choose the task to perfom", choices=list(SAPIENS_LITE_MODELS_PATH.keys()) ) model_name = gr.Dropdown( label="Model Version", choices=list(SAPIENS_LITE_MODELS_PATH["seg"].keys()), value="0.3B", ) # example_model = gr.Examples( # inputs=input_image, # examples_per_page=10, # examples=[ # os.path.join(ASSETS_DIR, "examples", img) # for img in os.listdir(os.path.join(ASSETS_DIR, "examples")) # ], # ) with gr.Column(): result_image = gr.Image(label="Segmentation Result", format="png") run_button = gr.Button("Run") #gr.Image(os.path.join(ASSETS_DIR, "legend.png"), label="Legend", type="filepath") with gr.TabItem('Video'): gr.Markdown("In construction") select_task.change(fn=update_model_choices, inputs=select_task, outputs=model_name) run_button.click( fn=segment, inputs=[input_image, model_name], outputs=[result_image], ) if __name__ == "__main__": demo.launch(share=False)