Spaces:
Running
Running
some changes
Browse files- app.py +5 -3
- src/about.py +2 -2
- src/display/utils.py +2 -2
- src/populate.py +7 -4
- src/submission/submit.py +38 -25
app.py
CHANGED
@@ -58,8 +58,8 @@ LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS,
|
|
58 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
59 |
|
60 |
def init_leaderboard(dataframe):
|
61 |
-
if dataframe is None or dataframe.empty:
|
62 |
-
|
63 |
return Leaderboard(
|
64 |
value=dataframe,
|
65 |
datatype=[c.type for c in fields(AutoEvalColumn)],
|
@@ -172,6 +172,7 @@ with demo:
|
|
172 |
interactive=True,
|
173 |
)
|
174 |
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
|
|
175 |
|
176 |
submit_button = gr.Button("Submit Eval")
|
177 |
submission_result = gr.Markdown()
|
@@ -184,6 +185,7 @@ with demo:
|
|
184 |
precision,
|
185 |
weight_type,
|
186 |
model_type,
|
|
|
187 |
],
|
188 |
submission_result,
|
189 |
)
|
@@ -199,6 +201,6 @@ with demo:
|
|
199 |
)
|
200 |
|
201 |
scheduler = BackgroundScheduler()
|
202 |
-
scheduler.add_job(restart_space, "interval", seconds=1800)
|
203 |
scheduler.start()
|
204 |
demo.queue(default_concurrency_limit=40).launch()
|
|
|
58 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
59 |
|
60 |
def init_leaderboard(dataframe):
|
61 |
+
# if dataframe is None or dataframe.empty:
|
62 |
+
# raise ValueError("Leaderboard DataFrame is empty or None.")
|
63 |
return Leaderboard(
|
64 |
value=dataframe,
|
65 |
datatype=[c.type for c in fields(AutoEvalColumn)],
|
|
|
172 |
interactive=True,
|
173 |
)
|
174 |
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
175 |
+
ans_file = gr.File(label="Arena Hard Answer File", file_types=[".json"])
|
176 |
|
177 |
submit_button = gr.Button("Submit Eval")
|
178 |
submission_result = gr.Markdown()
|
|
|
185 |
precision,
|
186 |
weight_type,
|
187 |
model_type,
|
188 |
+
ans_file
|
189 |
],
|
190 |
submission_result,
|
191 |
)
|
|
|
201 |
)
|
202 |
|
203 |
scheduler = BackgroundScheduler()
|
204 |
+
# scheduler.add_job(restart_space, "interval", seconds=1800)
|
205 |
scheduler.start()
|
206 |
demo.queue(default_concurrency_limit=40).launch()
|
src/about.py
CHANGED
@@ -11,8 +11,8 @@ class Task:
|
|
11 |
# Select your tasks here
|
12 |
# ---------------------------------------------------
|
13 |
class Tasks(Enum):
|
14 |
-
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
15 |
-
task0 = Task("
|
16 |
task1 = Task("logiqa", "acc_norm", "LogiQA")
|
17 |
|
18 |
NUM_FEWSHOT = 0 # Change with your few shot
|
|
|
11 |
# Select your tasks here
|
12 |
# ---------------------------------------------------
|
13 |
class Tasks(Enum):
|
14 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
15 |
+
task0 = Task("arenahard", "score", "score")
|
16 |
task1 = Task("logiqa", "acc_norm", "LogiQA")
|
17 |
|
18 |
NUM_FEWSHOT = 0 # Change with your few shot
|
src/display/utils.py
CHANGED
@@ -12,7 +12,7 @@ def fields(raw_class):
|
|
12 |
# These classes are for user facing column names,
|
13 |
# to avoid having to change them all around the code
|
14 |
# when a modif is needed
|
15 |
-
@dataclass
|
16 |
class ColumnContent:
|
17 |
name: str
|
18 |
type: str
|
@@ -23,7 +23,7 @@ class ColumnContent:
|
|
23 |
## Leaderboard columns
|
24 |
auto_eval_column_dict = []
|
25 |
# Init
|
26 |
-
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
27 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
28 |
#Scores
|
29 |
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
|
|
12 |
# These classes are for user facing column names,
|
13 |
# to avoid having to change them all around the code
|
14 |
# when a modif is needed
|
15 |
+
@dataclass(frozen=True)
|
16 |
class ColumnContent:
|
17 |
name: str
|
18 |
type: str
|
|
|
23 |
## Leaderboard columns
|
24 |
auto_eval_column_dict = []
|
25 |
# Init
|
26 |
+
# auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
27 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
28 |
#Scores
|
29 |
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
src/populate.py
CHANGED
@@ -13,12 +13,15 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
|
|
13 |
raw_data = get_raw_eval_results(results_path, requests_path)
|
14 |
all_data_json = [v.to_dict() for v in raw_data]
|
15 |
|
16 |
-
df = pd.DataFrame.from_records(all_data_json)
|
17 |
-
df
|
18 |
-
df =
|
|
|
|
|
|
|
19 |
|
20 |
# filter out if any of the benchmarks have not been produced
|
21 |
-
df = df[has_no_nan_values(df, benchmark_cols)]
|
22 |
return df
|
23 |
|
24 |
|
|
|
13 |
raw_data = get_raw_eval_results(results_path, requests_path)
|
14 |
all_data_json = [v.to_dict() for v in raw_data]
|
15 |
|
16 |
+
df = pd.DataFrame.from_records(all_data_json,columns=cols)
|
17 |
+
df['model']="nothing"
|
18 |
+
# df.columns = cols
|
19 |
+
# df.iloc[0]= create dummy
|
20 |
+
# df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
21 |
+
# df = df[cols].round(decimals=2)
|
22 |
|
23 |
# filter out if any of the benchmarks have not been produced
|
24 |
+
# df = df[has_no_nan_values(df, benchmark_cols)]
|
25 |
return df
|
26 |
|
27 |
|
src/submission/submit.py
CHANGED
@@ -6,9 +6,9 @@ from src.display.formatting import styled_error, styled_message, styled_warning
|
|
6 |
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
|
7 |
from src.submission.check_validity import (
|
8 |
already_submitted_models,
|
9 |
-
check_model_card,
|
10 |
-
get_model_size,
|
11 |
-
is_model_on_hub,
|
12 |
)
|
13 |
|
14 |
REQUESTED_MODELS = None
|
@@ -21,6 +21,7 @@ def add_new_eval(
|
|
21 |
precision: str,
|
22 |
weight_type: str,
|
23 |
model_type: str,
|
|
|
24 |
):
|
25 |
global REQUESTED_MODELS
|
26 |
global USERS_TO_SUBMISSION_DATES
|
@@ -44,33 +45,33 @@ def add_new_eval(
|
|
44 |
revision = "main"
|
45 |
|
46 |
# Is the model on the hub?
|
47 |
-
if weight_type in ["Delta", "Adapter"]:
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
|
52 |
-
if not weight_type == "Adapter":
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
|
57 |
# Is the model info correctly filled?
|
58 |
-
try:
|
59 |
-
|
60 |
-
except Exception:
|
61 |
-
|
62 |
|
63 |
-
model_size = get_model_size(model_info=model_info, precision=precision)
|
64 |
|
65 |
# Were the model card and license filled?
|
66 |
-
try:
|
67 |
-
|
68 |
-
except Exception:
|
69 |
-
|
70 |
|
71 |
-
modelcard_OK, error_msg = check_model_card(model)
|
72 |
-
if not modelcard_OK:
|
73 |
-
|
74 |
|
75 |
# Seems good, creating the eval
|
76 |
print("Adding new eval")
|
@@ -84,8 +85,8 @@ def add_new_eval(
|
|
84 |
"status": "PENDING",
|
85 |
"submitted_time": current_time,
|
86 |
"model_type": model_type,
|
87 |
-
"likes":
|
88 |
-
"params":
|
89 |
"license": license,
|
90 |
"private": False,
|
91 |
}
|
@@ -98,10 +99,14 @@ def add_new_eval(
|
|
98 |
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
99 |
os.makedirs(OUT_DIR, exist_ok=True)
|
100 |
out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
|
|
|
101 |
|
102 |
with open(out_path, "w") as f:
|
103 |
f.write(json.dumps(eval_entry))
|
104 |
|
|
|
|
|
|
|
105 |
print("Uploading eval file")
|
106 |
API.upload_file(
|
107 |
path_or_fileobj=out_path,
|
@@ -110,9 +115,17 @@ def add_new_eval(
|
|
110 |
repo_type="dataset",
|
111 |
commit_message=f"Add {model} to eval queue",
|
112 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
# Remove the local file
|
115 |
os.remove(out_path)
|
|
|
116 |
|
117 |
return styled_message(
|
118 |
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
|
|
|
6 |
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
|
7 |
from src.submission.check_validity import (
|
8 |
already_submitted_models,
|
9 |
+
# check_model_card,
|
10 |
+
# get_model_size,
|
11 |
+
# is_model_on_hub,
|
12 |
)
|
13 |
|
14 |
REQUESTED_MODELS = None
|
|
|
21 |
precision: str,
|
22 |
weight_type: str,
|
23 |
model_type: str,
|
24 |
+
ans_file: str,
|
25 |
):
|
26 |
global REQUESTED_MODELS
|
27 |
global USERS_TO_SUBMISSION_DATES
|
|
|
45 |
revision = "main"
|
46 |
|
47 |
# Is the model on the hub?
|
48 |
+
# if weight_type in ["Delta", "Adapter"]:
|
49 |
+
# base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
|
50 |
+
# if not base_model_on_hub:
|
51 |
+
# return styled_error(f'Base model "{base_model}" {error}')
|
52 |
|
53 |
+
# if not weight_type == "Adapter":
|
54 |
+
# model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
|
55 |
+
# if not model_on_hub:
|
56 |
+
# return styled_error(f'Model "{model}" {error}')
|
57 |
|
58 |
# Is the model info correctly filled?
|
59 |
+
# try:
|
60 |
+
# model_info = API.model_info(repo_id=model, revision=revision)
|
61 |
+
# except Exception:
|
62 |
+
# return styled_error("Could not get your model information. Please fill it up properly.")
|
63 |
|
64 |
+
# model_size = get_model_size(model_info=model_info, precision=precision)
|
65 |
|
66 |
# Were the model card and license filled?
|
67 |
+
# try:
|
68 |
+
# license = model_info.cardData["license"]
|
69 |
+
# except Exception:
|
70 |
+
# return styled_error("Please select a license for your model")
|
71 |
|
72 |
+
# modelcard_OK, error_msg = check_model_card(model)
|
73 |
+
# if not modelcard_OK:
|
74 |
+
# return styled_error(error_msg)
|
75 |
|
76 |
# Seems good, creating the eval
|
77 |
print("Adding new eval")
|
|
|
85 |
"status": "PENDING",
|
86 |
"submitted_time": current_time,
|
87 |
"model_type": model_type,
|
88 |
+
"likes": "",
|
89 |
+
"params": "",
|
90 |
"license": license,
|
91 |
"private": False,
|
92 |
}
|
|
|
99 |
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
100 |
os.makedirs(OUT_DIR, exist_ok=True)
|
101 |
out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
|
102 |
+
out_path_upload = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}_toeval.json"
|
103 |
|
104 |
with open(out_path, "w") as f:
|
105 |
f.write(json.dumps(eval_entry))
|
106 |
|
107 |
+
with open(out_path_upload, "w") as f:
|
108 |
+
f.write(open(ans_file).read())
|
109 |
+
|
110 |
print("Uploading eval file")
|
111 |
API.upload_file(
|
112 |
path_or_fileobj=out_path,
|
|
|
115 |
repo_type="dataset",
|
116 |
commit_message=f"Add {model} to eval queue",
|
117 |
)
|
118 |
+
API.upload_file(
|
119 |
+
path_or_fileobj=out_path_upload,
|
120 |
+
path_in_repo=out_path_upload.split("eval-queue/")[1],
|
121 |
+
repo_id=QUEUE_REPO,
|
122 |
+
repo_type="dataset",
|
123 |
+
commit_message=f"Add {model} to eval queue",
|
124 |
+
)
|
125 |
|
126 |
# Remove the local file
|
127 |
os.remove(out_path)
|
128 |
+
os.remove(out_path_upload)
|
129 |
|
130 |
return styled_message(
|
131 |
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
|