import json import os from datetime import datetime, timezone import gradio as gr from src.display.formatting import styled_error, styled_message, styled_warning from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO from src.submission.check_validity import ( already_submitted_models, # check_model_card, # get_model_size, # is_model_on_hub, ) REQUESTED_MODELS = None USERS_TO_SUBMISSION_DATES = None def add_new_eval( model: str, user_name: str, revision: str, precision: str, weight_type: str, model_type: str, ans_file: str, profile: gr.OAuthProfile | None ): if profile is None: return styled_error("Hub Login Required") global REQUESTED_MODELS global USERS_TO_SUBMISSION_DATES if not REQUESTED_MODELS: REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH) user_name = user_name model_path = model if "/" in model: user_name = model.split("/")[0] model_path = model.split("/")[1] precision = precision.split(" ")[0] current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") if model_type is None or model_type == "": return styled_error("Please select a model type.") # Does the model actually exist? if revision == "": revision = "main" # Is the model on the hub? # if weight_type in ["Delta", "Adapter"]: # base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True) # if not base_model_on_hub: # return styled_error(f'Base model "{base_model}" {error}') # if not weight_type == "Adapter": # model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True) # if not model_on_hub: # return styled_error(f'Model "{model}" {error}') # Is the model info correctly filled? # try: # model_info = API.model_info(repo_id=model, revision=revision) # except Exception: # return styled_error("Could not get your model information. Please fill it up properly.") # model_size = get_model_size(model_info=model_info, precision=precision) # Were the model card and license filled? # try: # license = model_info.cardData["license"] # except Exception: # return styled_error("Please select a license for your model") # modelcard_OK, error_msg = check_model_card(model) # if not modelcard_OK: # return styled_error(error_msg) # Seems good, creating the eval print("Adding new eval") OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}" os.makedirs(OUT_DIR, exist_ok=True) out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json" out_path_upload = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}_toeval.json" eval_entry = { "model": model, "user_name": user_name, "revision": revision, "precision": precision, "weight_type": weight_type, "status": "PENDING", "submitted_time": current_time, "model_type": model_type, "likes": "", "params": "", "license": "", "private": False, "answers_file": str(out_path_upload), } # Check for duplicate submission if f"{model}_{revision}_{precision}" in REQUESTED_MODELS: return styled_warning("This model has been already submitted.") print("Creating eval file") with open(out_path, "w") as f: f.write(json.dumps(eval_entry)) with open(out_path_upload, "w") as f: f.write(open(ans_file).read()) print("Uploading eval file") API.upload_file( path_or_fileobj=out_path, path_in_repo=out_path.split("eval-queue/")[1], repo_id=QUEUE_REPO, repo_type="dataset", commit_message=f"Add {model} to eval queue", ) API.upload_file( path_or_fileobj=out_path_upload, path_in_repo=out_path_upload.split("eval-queue/")[1], repo_id=QUEUE_REPO, repo_type="dataset", commit_message=f"Add {model} to eval queue", ) # Remove the local file os.remove(out_path) os.remove(out_path_upload) return styled_message( "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list." )