import os import random import gradio as gr import requests from PIL import Image from utils import read_css_from_file from inference import generate_image_from_text, generate_image_from_text_with_persistent_storage # Read CSS from file css = read_css_from_file("style.css") DESCRIPTION = ''' <div id="content_align"> <span style="color:darkred;font-size:32px;font-weight:bold"> WordCraft : Visuals from Verbs </span> </div> <div id="content_align"> <span style="color:blue;font-size:18px;font-weight:bold;"> <br>A small, lightining fast efficient AI image generator </span> </div> <div id="content_align" style="margin-top: 10px;font-weight:bold;"> <br>This 💻 demo uses the EfficientCLIP-GAN model which is trained on CUB dataset🐦🐥. <br>Keep your prompt coherent to the birds domain. <br>If you like the demo, don't forget to click on the like 💖 button. </div> ''' # Creating Gradio interface with gr.Blocks(css=css) as app: gr.Markdown(DESCRIPTION) with gr.Row(): with gr.Column(): text_prompt = gr.Textbox(label="Input Prompt", value="this tiny bird has a very small bill, a belly covered with white delicate feathers and has a set of black rounded eyes.", lines=3) generate_button = gr.Button("Generate Images", variant='primary') with gr.Row(): with gr.Column(): image_output1 = gr.Image(label="Generated Image 1") image_output2 = gr.Image(label="Generated Image 2") with gr.Column(): image_output3 = gr.Image(label="Generated Image 3") image_output4 = gr.Image(label="Generated Image 4") generate_button.click(generate_image_from_text_with_persistent_storage, inputs=[text_prompt], outputs=[image_output1, image_output2, image_output3, image_output4]) # Launch the app app.launch()