import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM, GPT2Tokenizer import torch from huggingface_hub import login import os # Load text generation model with fallback for tokenizer def load_model(model_name): try: # Try loading the fast tokenizer first tokenizer = AutoTokenizer.from_pretrained(model_name) except Exception as e: print(f"Fast tokenizer not available for {model_name}. Falling back to regular tokenizer. Error: {e}") # If fast tokenizer is not available, fall back to the regular tokenizer tokenizer = GPT2Tokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Assign eos_token as pad_token if not already set if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token if model.config.pad_token_id is None: model.config.pad_token_id = tokenizer.pad_token_id return tokenizer, model # Load Hugging Face token hf_token = os.getenv('HF_API_TOKEN') if not hf_token: raise ValueError("Error: Hugging Face token not found. Please set it as an environment variable.") # Login to Hugging Face Hub login(hf_token) # Function to compare text generation from both models def compare_models(prompt, original_model_name, fine_tuned_model_name): # Load the original and fine-tuned models based on user input original_tokenizer, original_model = load_model(original_model_name) fine_tuned_tokenizer, fine_tuned_model = load_model(fine_tuned_model_name) # Ensure models are in evaluation mode original_model.eval() fine_tuned_model.eval() # Generate text with the original model inputs_orig = original_tokenizer(prompt, return_tensors="pt", padding=True) with torch.no_grad(): generated_ids_orig = original_model.generate( input_ids=inputs_orig["input_ids"], attention_mask=inputs_orig["attention_mask"], max_length=100, pad_token_id=original_tokenizer.pad_token_id ) generated_text_orig = original_tokenizer.decode( generated_ids_orig[0], skip_special_tokens=True, clean_up_tokenization_spaces=True # Optional ) # Generate text with the fine-tuned model inputs_fine = fine_tuned_tokenizer(prompt, return_tensors="pt", padding=True) with torch.no_grad(): generated_ids_fine = fine_tuned_model.generate( input_ids=inputs_fine["input_ids"], attention_mask=inputs_fine["attention_mask"], max_length=100, pad_token_id=fine_tuned_tokenizer.pad_token_id ) generated_text_fine = fine_tuned_tokenizer.decode( generated_ids_fine[0], skip_special_tokens=True, clean_up_tokenization_spaces=True # Optional ) # Return the generated text from both models for comparison result = { "Original Model Output": generated_text_orig, "Fine-Tuned Model Output": generated_text_fine } return result # Gradio Interface iface = gr.Interface( fn=compare_models, inputs=[ gr.Textbox(lines=5, placeholder="Enter text here...", label="Input Text"), gr.Textbox(lines=1, placeholder="e.g., gpt2-medium", label="Original Model Name"), gr.Textbox(lines=1, placeholder="e.g., your-username/gpt2-medium-finetuned", label="Fine-Tuned Model Name") ], outputs=gr.JSON(label="Generated Texts"), title="Compare Text Generation from Original and Fine-Tuned Models", description="Enter a prompt and model names to generate text from the original and fine-tuned models." ) iface.launch()