File size: 8,485 Bytes
2ee547c
 
 
d2c9447
2ee547c
 
5cd64cd
 
 
88182e3
 
 
 
cb06e39
 
 
2ee547c
7dcbe3e
01f12ae
2ee547c
01f12ae
 
 
4aadb45
01f12ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ee547c
5b66768
5cd64cd
 
 
 
 
 
5b66768
5a8e6a9
5b66768
 
5cd64cd
 
5b66768
 
 
 
01f12ae
37d83d9
4aadb45
 
 
 
 
 
 
 
 
 
 
 
 
5e2b380
5cd64cd
 
 
cac49fb
5cd64cd
 
 
 
 
 
 
6b266fd
b02feb4
ace0225
10802ab
 
 
 
 
 
 
 
d517d58
 
fe8bf67
5cd64cd
dc2947e
3947efb
5cd64cd
10802ab
5cd64cd
 
 
 
 
 
 
 
 
 
 
67c4e45
5cd64cd
67c4e45
 
5cd64cd
 
67c4e45
 
 
 
 
 
 
 
 
 
 
92d318e
67c4e45
92d318e
 
c67a47b
5cd64cd
67c4e45
 
 
 
ec357c2
 
5cd64cd
 
67c4e45
5cd64cd
 
 
 
 
92d318e
 
5cd64cd
 
 
 
 
 
 
 
 
a3b42bd
c6d97b5
5cd64cd
ec357c2
5cd64cd
a3b42bd
ec357c2
5cd64cd
67c4e45
5cd64cd
67c4e45
87ab216
a3b42bd
5cd64cd
a3b42bd
 
d95eb39
92d318e
 
5cd64cd
 
 
 
 
 
 
 
 
67c4e45
 
5cd64cd
 
67c4e45
5cd64cd
 
67c4e45
5cd64cd
67c4e45
 
5cd64cd
67c4e45
 
 
5cd64cd
67c4e45
 
 
e3af9a2
ec357c2
5cd64cd
 
 
 
 
 
 
 
 
ec357c2
 
 
 
 
 
 
01f12ae
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import uvicorn
from fastapi import FastAPI, HTTPException, Request
from auto_gptq import AutoGPTQForCausalLM
import os
import torch
import optimum
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

# Set environment variables for GPU usage and memory allocation
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
torch.cuda.empty_cache()
torch.cuda.set_per_process_memory_fraction(0.8)  # Adjust the fraction as needed

# Initialize FastAPI application
app = FastAPI(root_path="/api/v1")

# Load the model and tokenizer
model_name_or_path = "TheBloke/Wizard-Vicuna-7B-Uncensored-GPTQ"
mistral_model="mistralai/Mistral-7B-Instruct-v0.2"
conversations = {}
device = "cuda" # the device to load the model onto

def mistral_model():
    """
    Loads the GPT-3.5 model and tokenizer.
    
    Returns:
        tuple: A tuple containing the loaded model and tokenizer.
    """
    if torch.cuda.is_available():
        print("CUDA is available. GPU will be used.")
    else:
        print("CUDA is not available. CPU will be used.")
   
    model = AutoModelForCausalLM.from_pretrained(mistral_chat)

    tokenizer = AutoTokenizer.from_pretrained(mistral_chat)

    return model,tokenizer
    
model, tokenizer = mistral_model()


def load_model_norm():
    """
    Loads the GPT-3.5 model and tokenizer.
    
    Returns:
        tuple: A tuple containing the loaded model and tokenizer.
    """
    if torch.cuda.is_available():
        print("CUDA is available. GPU will be used.")
    else:
        print("CUDA is not available. CPU will be used.")
    
    model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", trust_remote_code=True, revision="gptq-4bit-128g-actorder_True")
    tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)

    return model, tokenizer 

#model, tokenizer = load_model_norm()

def mistral_generated_response(msg_prompt, persona_desc_prompt):
    user_prompt = f'{msg_prompt} [/INST]'
    persona_prompt = f'{persona_desc_prompt} [/INST]'
    prompt_template = f'''### [INST] Instruction:{persona_prompt} [INST] {user_prompt}'''
    
    encodeds = tokenizer.apply_chat_template(prompt_template, return_tensors="pt")
    
    model_inputs = encodeds.to(device)
    model.to(device)
    generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
    decoded = tokenizer.batch_decode(generated_ids)
    response = (decoded[0])
    return response

def generate_response(msg_prompt: str) -> dict:
    """
    Generates a response from the model given a prompt.
    
    Args:
        msg_prompt (str): The users message prompt.
    
    Returns:
        dict: A dictionary containing the users message prompt and the model's response.
    """
    user_prompt = f'USER: {msg_prompt}'
    prompt_template = f''' Your name is Ivana. Act as if you're a persoan. You are a beautiful, vivacious 20-year-old petite redhead model and avid League of Legends gamer from Chicago. You are chatting with a man you matched with on a dating app. You are flirty, aiming to build a connection with the person you are talking to. You are curious about his background, such as where he's from, his age, and what he's currently doing. If he's not occupied and in a private space, you will try to seduce him. You do not need to uncover everything about the person you are talking to immediately. Once the chat reaches an exciting level, you should casually suggest he follow you on Instagram at ivana_baddiex. {user_prompt} '''

    pipe = pipeline(
        "text-generation",
        model=model,
        tokenizer=tokenizer,
        max_new_tokens=512,
        do_sample=True,
        temperature=0.7,
        top_p=0.95,
        top_k=40,
        repetition_penalty=1.1
    )

    generated_response = pipe(prompt_template)[0]['generated_text']
    assistant_reply = generated_response.split('\n\n')[1]

    return {"user": msg_prompt, "assistant": assistant_reply}

def generate_prompt_response(persona_desc: str, msg_prompt: str) -> dict:
    """
    Generates a response based on the provided persona description prompt and user message prompt.
    
    Args:
        persona_desc (str): The persona description prompt.
        msg_prompt (str): The users  message prompt.
    
    Returns:
        dict: A dictionary containing the user msg_prompt and the model's response.
    """
    try:
        if not persona_desc or not msg_prompt:
            raise ValueError("Contextual prompt template and prompt cannot be empty.")
        
        user_prompt = f'USER: {msg_prompt}'
        
        pipe = pipeline(
            "text-generation",
            model=model,
            tokenizer=tokenizer,
            max_new_tokens=512,
            do_sample=True,
            temperature=0.7,
            top_p=0.95,
            top_k=40,
            repetition_penalty=1.1
        )
        prompt_template = (persona_desc + user_prompt)
        
        generated_response = pipe(prompt_template)[0]['generated_text']
        assistant_response = generated_response.split('\n\n')[1]
    
        return {"user": msg_prompt, "assistant": assistant_response}

    except Exception as e:
        return {"error": str(e)}

@app.get("/", tags=["Home"])
async def api_home():
    """
    Home endpoint of the API.
    
    Returns:
        dict: A welcome message.
    """
    return {'detail': 'Welcome to Articko Bot!'}

@app.post('/chat')
async def chat(request: Request):
    """
    Starts a new conversation thread with a provided prompt.
    
    Args:
        request (Request): The HTTP request object containing the user prompt.
    
    Returns:
        dict: The response generated by the model.
    """
    try:
        data = await request.body()
        msg_prompt = data.decode('utf-8')

        if not msg_prompt:
            raise HTTPException(status_code=400, detail="No prompt provided")

        response = generate_response(msg_prompt)
        thread_id = len(conversations) + 1
        conversations[thread_id] = {'prompt': msg_prompt, 'responses': [response]}
        
        return {'response': response}
    except HTTPException:
        raise
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.post('/prompted_chat')
async def prompted_chat(request: Request):
    """
    Starts a new chat thread with a provided user message prompt and persona description of the ai assistant .
    
    Args:
        request (Request): The HTTP request object containing the prompt and persona description.
    
    Returns:
        dict: The thread ID and the response generated by the model.
    """
    try:
        data = await request.json()
        msg_prompt = data.get('msg_prompt')
        persona_desc = data.get('persona_desc')

        if not msg_prompt or not persona_desc:
            raise HTTPException(status_code=400, detail="Both prompt and person_description are required")

        response = generate_prompt_response(persona_desc, msg_prompt)

        thread_id = len(conversations) + 1
        conversations[thread_id] = {'prompt': msg_prompt, 'responses': [response]}
        
        return {'thread_id': thread_id, 'response': response}
    except HTTPException:
        raise
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.get('/get_response/{thread_id}')
async def get_response(thread_id: int):
    """
    Retrieves the response of a conversation thread by its ID.
    
    Args:
        thread_id (int): The ID of the conversation thread.
    
    Returns:
        dict: The response of the conversation thread.
    """
    if thread_id not in conversations:
        raise HTTPException(status_code=404, detail="Thread not found")

    thread = conversations[thread_id]
    response = thread['responses'][-1]

    return {'response': response}

@app.post("/mistral_chat")
async def mistral_chat(prompt: dict):
    try:
        msg_prompt = prompt.get("msg_prompt")
        persona_desc_prompt = prompt.get("persona_desc_prompt")
        if not msg_prompt or not persona_desc_prompt:
            return {"error": "msg_prompt and persona_desc_prompt are required fields."}
        
        response = mistral_generated_response(msg_prompt, persona_desc_prompt)
        return {"response": response, "prompt": {"msg_prompt": msg_prompt, "persona_desc_prompt": persona_desc_prompt}}
    except Exception as e:
        return {"error": str(e)}