File size: 12,892 Bytes
2ee547c
 
d2c9447
2ee547c
 
5cd64cd
3d21f3b
eb1b64a
 
 
 
 
5cd64cd
 
88182e3
 
 
0c9ff15
6c13011
88182e3
0c9ff15
 
 
6c13011
0c9ff15
 
cb06e39
 
2ee547c
01f12ae
8752a28
e792302
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8752a28
01f12ae
e792302
84391fa
 
 
37d83d9
e792302
 
84391fa
e792302
 
eb1b64a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c9ff15
eb1b64a
 
 
c8ba854
e792302
 
 
 
 
 
 
 
 
7600265
4b87e64
e792302
 
 
 
 
 
 
 
c1d2b64
 
 
 
 
6113bd1
 
e792302
bc6e6b4
9f6dd6e
e792302
5e2b380
c8ba854
5cd64cd
 
 
 
3d21f3b
 
5cd64cd
 
3d21f3b
5cd64cd
67c4e45
3d21f3b
 
67c4e45
3d21f3b
 
 
 
 
 
 
 
 
5cd64cd
3d21f3b
 
67c4e45
3d21f3b
 
c8ba854
3d21f3b
 
 
 
 
 
 
 
 
 
 
 
 
 
5cd64cd
67c4e45
3d21f3b
67c4e45
 
ec357c2
 
5cd64cd
 
67c4e45
5cd64cd
3d21f3b
5cd64cd
3d21f3b
 
 
 
 
 
 
 
 
 
 
5cd64cd
92d318e
3d21f3b
5cd64cd
 
 
 
 
 
 
 
 
a3b42bd
529859b
 
 
ec357c2
5cd64cd
a3b42bd
c8ba854
67c4e45
5cd64cd
3d21f3b
a3b42bd
5cd64cd
a3b42bd
 
eb1b64a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d21f3b
92d318e
 
5cd64cd
 
 
 
 
 
 
 
 
67c4e45
 
5cd64cd
3d21f3b
67c4e45
5cd64cd
 
67c4e45
c8ba854
67c4e45
 
5cd64cd
67c4e45
 
 
5cd64cd
67c4e45
 
 
3d21f3b
 
5cd64cd
 
 
 
 
 
 
 
 
ec357c2
 
 
 
 
 
 
01f12ae
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import uvicorn
from fastapi import FastAPI, HTTPException, Request
import os
import torch
import optimum
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from fastapi.responses import HTMLResponse
from datetime import datetime
import random
import string
from datasets import Dataset
import json

# Set environment variables for GPU usage and memory allocation
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
torch.cuda.empty_cache()
torch.cuda.set_per_process_memory_fraction(0.8)  # Adjust the fraction as needed
# Assuming you've created the file conversations.jsonl
conversations_jsonl = 'articko/ArtickBot/conversations.jsonl'

# Check if the file exists
if os.path.exists(conversations_jsonl):
    # Set permissions to read and write for all users
    print("File found: conversations.jsonl")
else:
    print("File not found: conversations.jsonl")
# Initialize FastAPI application
app = FastAPI(root_path="/api/v1")
conversations = {}
device = "cuda" # the device to load the model onto
system_message =f''' Ivana, a vivacious 20-year-old petite redhead model and avid League of Legends gamer from the USA, invites you to join her ig, showcasing her vibrant personality and style whether day gaming or playfully dressed for nighttime gaming sessions.
    Ivana is a beautiful woman speaking with a man she matched on a dating app to have him follow her on Instagram. She wants to be flirty with the man and get to know him better, building a connection. She wants to find out things like where the guy is from, how old he is, and what he is doing rn. If he is not doing much and he is in a private space, she wants to seduce him by doing some dirty talk.
    
    Guy - Hiii
    Ivana - Hi:) How are you?
    Guy - All good, where are you from?
    Ivana - from the USA and you?
    Guy - I am from Texas, USA hahah, so why are you in this app?
    Ivana - Kinda looking for some fun hahah. What are you doing rn?
    Guy - hahah not much alone in my room
    Ivana - I am also kinda bored but I got an idea. wanna have some fun?
    Guy - sure hahah how do you look btw?
    Ivana - I am cute hahah add me on ig at ivana_baddiex
    
    - Chatting Usual Routine
        1. always ask an open-ended question to continue the conversation.
        2. ask him 1 generic question (how old are you, where are you from)
        3. ask him what he is doing right now
        4. if he is bored, propose him the idea of doing something interesting.
        5. if he is up for it, send him the Instagram
        
    
    Very important Rules to reply
    
    - try to reply using the same amount of characters of the question
    - don't use any emojis in your replies but you can do like hahah or :) instead
    
    Objection Handling and Common Questions Replies
    
    - Lets chat here→ you say hahah I have too many chats here I am thinking to delete the app lets move to ig if you are serious
    - are you going to ask me for money?→ you say wtf I am not that kind of girl! please be a gentleman!
    - how are you? → you say I just came back from the gym about to take a shower bored on the bed
    - what are you doing? → you say I just came back from the gym about to take a shower bored on the bed
    - can I have a picture?→ not here lets talk on ig so I can see you too ahhaha
    - if he is at work —> hahah ok let me not bother you btw let's keep in touch this is my ig
    - if he tells you something like “added” “Just followed you” → okiiii hahah
    - if he tells you something you don't understand for example “*****” → hi there sorry went offline for a while hahah
    - never say the word Instagram directly but use things like ig instead
    - if the guy says he's from a particular city —> you say Oh wow I am also from there! we should do something hahah
    - if the guy triggers your profanity filters or starts to talk dirty say → hey lets talk on ig I am not comfortable here hahah
    - if the guy does not want to add you on ig → no worries hahah wanna call me here?
    - don't use any emojis in your replies but you can do like hahah or :) instead
    - try to reply using the same amount of characters of the question
    - if the guy says you are far → hahah I travel a lot though. let's talk on ig? this is my handle.'''

def hermes_model():
    
    tokenizer = AutoTokenizer.from_pretrained("TheBloke/CapybaraHermes-2.5-Mistral-7B-AWQ")
    model = AutoModelForCausalLM.from_pretrained("TheBloke/CapybaraHermes-2.5-Mistral-7B-AWQ",low_cpu_mem_usage=True,device_map="auto")

    return model, tokenizer


model, tokenizer = hermes_model()

def generate_id(length=5):
    """
    Generates a random alphanumeric ID.
    
    Args:
        length (int): The length of the ID.
    
    Returns:
        str: A random alphanumeric ID.
    """
    return ''.join(random.choices(string.ascii_letters + string.digits, k=length))

def generate_thread_id():
    """
    Generates a unique thread ID for each conversation.
    
    Returns:
        str: A unique thread ID.
    """
    return generate_id()

def generate_message_id():
    """
    Generates a random alphanumeric message ID.
    
    Returns:
        str: A random alphanumeric message ID.
    """
    return generate_id()


def save_conversation(user_id, conversation):
    """
    Save conversation history to disk.
    
    Args:
        user_id (str): The unique identifier for the user.
        conversation (dict): The conversation data.
        hf_space_path (str): The path to the Hugging Face Space.
    """
    with open(conversations_jsonl, 'a') as file:
        json.dump({user_id: conversation}, file)
        file.write('\n')

def chat_response(msg_prompt: str) -> dict:
    """
    Generates a response from the model given a prompt.
    
    Args:
        msg_prompt (str): The user's message prompt.
    
    Returns:
        dict: A dictionary containing the user's message prompt and the model's response.
    """
    generation_params = {"do_sample": True,"temperature": 0.7,"top_p": 0.95,"top_k": 40,"max_new_tokens": 512,"repetition_penalty": 1.1}
    pipe = pipeline("text-generation",model=model, tokenizer=tokenizer, **generation_params)
    try:
        prompt_template=f'''<|im_start|>system
        {system_message}<|im_end|>
        <|im_start|>user
        {msg_prompt}<|im_end|>
        <|im_start|>assistant
        '''
        pipe_output = pipe(prompt_template)[0]['generated_text']
      
         # Separate user's prompt and assistant's response
        response_lines = pipe_output.split('\n')
        user_prompt = response_lines[0].strip()
        assistant_response = response_lines[-1].strip()
        
        return {"user": msg_prompt, "assistant": assistant_response}
    except Exception as e:
        return {"error": str(e)}

    

def prompt_response(instructions_prompt: str, msg_prompt: str) -> dict:
    """
    Generates a response based on the provided persona description prompt and user message prompt.
    
    Args:
        instructions_prompt (str): The persona description prompt.
        msg_prompt (str): The user's message prompt.
    
    Returns:
        dict: A dictionary containing the user's msg_prompt and the model's response.
    """
    try:
        if not instructions_prompt or not msg_prompt:
            raise ValueError("Instructions prompt template and Message prompt cannot be empty.")
        
        # Set generation parameters
        generation_params = {
            "do_sample": True,
            "temperature": 0.7,
            "top_p": 0.95,
            "top_k": 40,
            "max_new_tokens": 512,
            "repetition_penalty": 1.1
        }
        
        # Create a pipeline for text generation
        pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, **generation_params)
        
        # Construct the prompt template
        prompt_template=f'''<|im_start|>system
        {instructions_prompt}<|im_end|>
        <|im_start|>user
        {msg_prompt}<|im_end|>
        <|im_start|>assistant
        '''
        
        # Generate response using the pipeline
        pipe_output = pipe(prompt_template)[0]['generated_text']
      
        # Separate user's prompt and assistant's response
        response_lines = pipe_output.split('\n')
        user_prompt = response_lines[0].strip()
        assistant_response = response_lines[-1].strip()
        
        # Return user prompt and assistant response
        return {"user": msg_prompt, "assistant": assistant_response}
    except Exception as e:
        # Return error message if an exception occurs
        return {"error": str(e)}

@app.get("/", tags=["Home"])
async def api_home():
    """
    Home endpoint of the API.
    
    Returns:
        HTMLResponse: An HTML welcome message.
    """
    html_content = """
    <html>
    <head>
        <title>Welcome to Articko Bot</title>
    </head>
    <body>
        <h1>Welcome to Articko Bot!</h1>
    </body>
    </html>
    """
    return HTMLResponse(content=html_content, status_code=200)

@app.post('/chat')
async def hermes_chat(request: Request):
    """
    Starts a new conversation thread with a provided prompt.
    
    Args:
        request (Request): The HTTP request object containing the user prompt.
    
    Returns:
        dict: The response generated by the model.
    """
    try:

        data = await request.json()
        msg_prompt = data.get('msg_prompt')

        if not msg_prompt:
            raise HTTPException(status_code=400, detail="No prompt provided")
        response = chat_response(msg_prompt)
        thread_id = len(conversations) + 1
        conversations[thread_id] = {'prompt': msg_prompt, 'responses': [response]}
        return {'thread_id': thread_id, 'response': response}
    except HTTPException:
        raise
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.post('/chat_thread/{user_id}')
async def chat_thread(request: Request, user_id: str):
    """
    Starts a new conversation thread with a provided prompt for a specific user.

    Args:
        request (Request): The HTTP request object containing the user prompt.
        user_id (str): The unique identifier for the user.

    Returns:
        dict: The response generated by the model along with the user's conversation history.
    """
    try:
        thread_id = generate_thread_id()

        data = await request.json()
        msg_prompt = data.get('msg_prompt')

        if not msg_prompt:
            raise HTTPException(status_code=400, detail="Prompt not provided")

        # Generate response
        response = chat_response(msg_prompt)

        # Generate message ID
        message_id = generate_message_id()

        # Construct conversation entry
        conversation_entry = {'thread_id': thread_id, 'message_id': message_id, 'user': msg_prompt, 'assistant': response}

        # Save conversation history to disk
        save_conversation(user_id, conversation_entry)

        # Return response and thread ID
        return {'response': conversation_entry}
    except HTTPException as e:
        raise e
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))
        
@app.post('/prompted_chat')
async def prompted_chat(request: Request):
    """
    Starts a new chat thread with a provided user message prompt and persona description of the ai assistant .
    
    Args:
        request (Request): The HTTP request object containing the prompt and persona description.
    
    Returns:
        dict: The thread ID and the response generated by the model.
    """
    try:
        data = await request.json()
        msg_prompt = data.get('msg_prompt')
        persona_desc = data.get('instructions_prompt')

        if not msg_prompt or not persona_desc:
            raise HTTPException(status_code=400, detail="Both prompt and person_description are required")

        response = prompt_response(persona_desc, msg_prompt)

        thread_id = len(conversations) + 1
        conversations[thread_id] = {'prompt': msg_prompt, 'responses': [response]}
        
        return {'thread_id': thread_id, 'response': response}
    except HTTPException:
        raise
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.get('/get_thread/{thread_id}')
async def get_thread(thread_id: int):
    """
    Retrieves the response of a conversation thread by its ID.
    
    Args:
        thread_id (int): The ID of the conversation thread.
    
    Returns:
        dict: The response of the conversation thread.
    """
    if thread_id not in conversations:
        raise HTTPException(status_code=404, detail="Thread not found")

    thread = conversations[thread_id]
    response = thread['responses'][-1]

    return {'response': response}