Artix / app.py
Vitrous's picture
Update app.py
01f12ae verified
raw
history blame
8.49 kB
import uvicorn
from fastapi import FastAPI, HTTPException, Request
from auto_gptq import AutoGPTQForCausalLM
import os
import torch
import optimum
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
# Set environment variables for GPU usage and memory allocation
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
torch.cuda.empty_cache()
torch.cuda.set_per_process_memory_fraction(0.8) # Adjust the fraction as needed
# Initialize FastAPI application
app = FastAPI(root_path="/api/v1")
# Load the model and tokenizer
model_name_or_path = "TheBloke/Wizard-Vicuna-7B-Uncensored-GPTQ"
mistral_model="mistralai/Mistral-7B-Instruct-v0.2"
conversations = {}
device = "cuda" # the device to load the model onto
def mistral_model():
"""
Loads the GPT-3.5 model and tokenizer.
Returns:
tuple: A tuple containing the loaded model and tokenizer.
"""
if torch.cuda.is_available():
print("CUDA is available. GPU will be used.")
else:
print("CUDA is not available. CPU will be used.")
model = AutoModelForCausalLM.from_pretrained(mistral_chat)
tokenizer = AutoTokenizer.from_pretrained(mistral_chat)
return model,tokenizer
model, tokenizer = mistral_model()
def mistral_generated_response(msg_prompt, persona_desc_prompt):
user_prompt = f'{msg_prompt} [/INST]'
persona_prompt = f'{persona_desc_prompt} [/INST]'
prompt_template = f'''### [INST] Instruction:{persona_prompt} [INST] {user_prompt}'''
encodeds = tokenizer.apply_chat_template(prompt_template, return_tensors="pt")
model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
response = (decoded[0])
return response
def load_model_norm():
"""
Loads the GPT-3.5 model and tokenizer.
Returns:
tuple: A tuple containing the loaded model and tokenizer.
"""
if torch.cuda.is_available():
print("CUDA is available. GPU will be used.")
else:
print("CUDA is not available. CPU will be used.")
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", trust_remote_code=True, revision="gptq-4bit-128g-actorder_True")
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
return model, tokenizer
#model, tokenizer = load_model_norm()
def generate_response(msg_prompt: str) -> dict:
"""
Generates a response from the model given a prompt.
Args:
msg_prompt (str): The users message prompt.
Returns:
dict: A dictionary containing the users message prompt and the model's response.
"""
user_prompt = f'USER: {msg_prompt}'
prompt_template = f''' Your name is Ivana. Act as if you're a persoan. You are a beautiful, vivacious 20-year-old petite redhead model and avid League of Legends gamer from Chicago. You are chatting with a man you matched with on a dating app. You are flirty, aiming to build a connection with the person you are talking to. You are curious about his background, such as where he's from, his age, and what he's currently doing. If he's not occupied and in a private space, you will try to seduce him. You do not need to uncover everything about the person you are talking to immediately. Once the chat reaches an exciting level, you should casually suggest he follow you on Instagram at ivana_baddiex. {user_prompt} '''
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
repetition_penalty=1.1
)
generated_response = pipe(prompt_template)[0]['generated_text']
assistant_reply = generated_response.split('\n\n')[1]
return {"user": msg_prompt, "assistant": assistant_reply}
def generate_prompt_response(persona_desc: str, msg_prompt: str) -> dict:
"""
Generates a response based on the provided persona description prompt and user message prompt.
Args:
persona_desc (str): The persona description prompt.
msg_prompt (str): The users message prompt.
Returns:
dict: A dictionary containing the user msg_prompt and the model's response.
"""
try:
if not persona_desc or not msg_prompt:
raise ValueError("Contextual prompt template and prompt cannot be empty.")
user_prompt = f'USER: {msg_prompt}'
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
repetition_penalty=1.1
)
prompt_template = (persona_desc + user_prompt)
generated_response = pipe(prompt_template)[0]['generated_text']
assistant_response = generated_response.split('\n\n')[1]
return {"user": msg_prompt, "assistant": assistant_response}
except Exception as e:
return {"error": str(e)}
@app.get("/", tags=["Home"])
async def api_home():
"""
Home endpoint of the API.
Returns:
dict: A welcome message.
"""
return {'detail': 'Welcome to Articko Bot!'}
@app.post('/chat')
async def chat(request: Request):
"""
Starts a new conversation thread with a provided prompt.
Args:
request (Request): The HTTP request object containing the user prompt.
Returns:
dict: The response generated by the model.
"""
try:
data = await request.body()
msg_prompt = data.decode('utf-8')
if not msg_prompt:
raise HTTPException(status_code=400, detail="No prompt provided")
response = generate_response(msg_prompt)
thread_id = len(conversations) + 1
conversations[thread_id] = {'prompt': msg_prompt, 'responses': [response]}
return {'response': response}
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post('/prompted_chat')
async def prompted_chat(request: Request):
"""
Starts a new chat thread with a provided user message prompt and persona description of the ai assistant .
Args:
request (Request): The HTTP request object containing the prompt and persona description.
Returns:
dict: The thread ID and the response generated by the model.
"""
try:
data = await request.json()
msg_prompt = data.get('msg_prompt')
persona_desc = data.get('persona_desc')
if not msg_prompt or not persona_desc:
raise HTTPException(status_code=400, detail="Both prompt and person_description are required")
response = generate_prompt_response(persona_desc, msg_prompt)
thread_id = len(conversations) + 1
conversations[thread_id] = {'prompt': msg_prompt, 'responses': [response]}
return {'thread_id': thread_id, 'response': response}
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get('/get_response/{thread_id}')
async def get_response(thread_id: int):
"""
Retrieves the response of a conversation thread by its ID.
Args:
thread_id (int): The ID of the conversation thread.
Returns:
dict: The response of the conversation thread.
"""
if thread_id not in conversations:
raise HTTPException(status_code=404, detail="Thread not found")
thread = conversations[thread_id]
response = thread['responses'][-1]
return {'response': response}
@app.post("/mistral_chat")
async def mistral_chat(prompt: dict):
try:
msg_prompt = prompt.get("msg_prompt")
persona_desc_prompt = prompt.get("persona_desc_prompt")
if not msg_prompt or not persona_desc_prompt:
return {"error": "msg_prompt and persona_desc_prompt are required fields."}
response = mistral_generated_response(msg_prompt, persona_desc_prompt)
return {"response": response, "prompt": {"msg_prompt": msg_prompt, "persona_desc_prompt": persona_desc_prompt}}
except Exception as e:
return {"error": str(e)}