Spaces:
Runtime error
Runtime error
File size: 8,579 Bytes
9793d8c a41ebe5 9793d8c 3239406 eeecec9 3239406 f7a95b4 9793d8c b841720 9793d8c 695475e 9793d8c 42c9772 85d3c26 9793d8c 88d4556 9793d8c 3239406 9793d8c 4da08fe 9793d8c 3239406 9793d8c 9369b80 9793d8c 525b190 9793d8c 7c92d6d 525b190 9793d8c 7c92d6d 9793d8c a7a80b8 9793d8c 3239406 9793d8c a7a80b8 9793d8c e3166b3 9793d8c 650f84d 9793d8c b841720 9793d8c b841720 9793d8c b0d663e 9369b80 9793d8c 650f84d 9793d8c bd44803 9793d8c 650f84d 9793d8c bd44803 9793d8c 42c9772 9793d8c 9e3bf20 9793d8c b0d663e 9793d8c 84fbde0 b0d663e 9793d8c 84fbde0 9793d8c 9e3bf20 84fbde0 9793d8c 525b190 9793d8c eeecec9 3239406 b841720 9793d8c a7a80b8 9793d8c eeecec9 084ab51 9793d8c eeecec9 084ab51 9793d8c eeecec9 084ab51 9793d8c a7a80b8 9793d8c 3239406 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import os
import random
import gradio as gr
import numpy as np
import PIL.Image
import torch
from typing import List
from diffusers.utils import numpy_to_pil
from diffusers import WuerstchenDecoderPipeline, WuerstchenPriorPipeline
from diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS
from previewer.modules import Previewer
from gallery_history import fetch_gallery_history, show_gallery_history
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
DESCRIPTION = "# Waves Weaves"
DESCRIPTION += "\n<p style=\"text-align: center\"></p>"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶</p>"
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536"))
USE_TORCH_COMPILE = False
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
PREVIEW_IMAGES = True
dtype = torch.float16
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
prior_pipeline = WuerstchenPriorPipeline.from_pretrained("warp-ai/wuerstchen-prior", torch_dtype=dtype)
decoder_pipeline = WuerstchenDecoderPipeline.from_pretrained("warp-ai/wuerstchen", torch_dtype=dtype)
if ENABLE_CPU_OFFLOAD:
prior_pipeline.enable_model_cpu_offload()
decoder_pipeline.enable_model_cpu_offload()
else:
prior_pipeline.to(device)
decoder_pipeline.to(device)
if USE_TORCH_COMPILE:
prior_pipeline.prior = torch.compile(prior_pipeline.prior, mode="reduce-overhead", fullgraph=True)
decoder_pipeline.decoder = torch.compile(decoder_pipeline.decoder, mode="reduce-overhead", fullgraph=True)
if PREVIEW_IMAGES:
previewer = Previewer()
previewer.load_state_dict(torch.load("previewer/text2img_wurstchen_b_v1_previewer_100k.pt")["state_dict"])
previewer.eval().requires_grad_(False).to(device).to(dtype)
def callback_prior(i, t, latents):
output = previewer(latents)
output = numpy_to_pil(output.clamp(0, 1).permute(0, 2, 3, 1).cpu().numpy())
return output
else:
previewer = None
callback_prior = None
else:
prior_pipeline = None
decoder_pipeline = None
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def generate(
prompt: str,
negative_prompt: str = "bad anatomy, blurry, fuzzy, extra arms, extra fingers, poorly drawn hands, disfigured, tiling, deformed, mutated, drawing, imperfections",
seed: int = 0,
width: int = 1024,
height: int = 1024,
prior_num_inference_steps: int = 60,
# prior_timesteps: List[float] = None,
prior_guidance_scale: float = 4.0,
decoder_num_inference_steps: int = 12,
# decoder_timesteps: List[float] = None,
decoder_guidance_scale: float = 0.0,
num_images_per_prompt: int = 2,
) -> PIL.Image.Image:
generator = torch.Generator().manual_seed(seed)
prior_output = prior_pipeline(
prompt=prompt,
height=height,
width=width,
timesteps=DEFAULT_STAGE_C_TIMESTEPS,
negative_prompt=negative_prompt,
guidance_scale=prior_guidance_scale,
num_images_per_prompt=num_images_per_prompt,
generator=generator,
callback=callback_prior,
)
if PREVIEW_IMAGES:
for _ in range(len(DEFAULT_STAGE_C_TIMESTEPS)):
r = next(prior_output)
if isinstance(r, list):
yield r
prior_output = r
decoder_output = decoder_pipeline(
image_embeddings=prior_output.image_embeddings,
prompt=prompt,
num_inference_steps=decoder_num_inference_steps,
# timesteps=decoder_timesteps,
guidance_scale=decoder_guidance_scale,
negative_prompt=negative_prompt,
generator=generator,
output_type="pil",
).images
yield decoder_output
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
]
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Imagine... 'A puppy', 'A Delicious Fruit Cake', 'Copacabana Beach'...",
container=False,
)
run_button = gr.Button("Weave", scale=0)
result = gr.Gallery(label="Result", show_label=False)
with gr.Accordion("Advanced options", open=False):
negative_prompt = gr.Text(
label="What I do NOT want",
max_lines=1,
placeholder="Uncheck seed to iterate and finetune.",
value="Example: Text"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=1024,
maximum=MAX_IMAGE_SIZE,
step=512,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=1024,
maximum=MAX_IMAGE_SIZE,
step=512,
value=1024,
)
num_images_per_prompt = gr.Slider(
label="Number of Images",
minimum=1,
maximum=2,
step=1,
value=2,
)
with gr.Row():
prior_guidance_scale = gr.Slider(
label="Prior Guidance Scale",
minimum=0,
maximum=20,
step=0.1,
value=17.0,
)
prior_num_inference_steps = gr.Slider(
label="Prior Inference Steps",
minimum=30,
maximum=60,
step=1,
value=30,
)
decoder_guidance_scale = gr.Slider(
label="Decoder Guidance Scale",
minimum=0,
maximum=0,
step=0.1,
value=0.0,
)
decoder_num_inference_steps = gr.Slider(
label="Decoder Inference Steps",
minimum=4,
maximum=12,
step=1,
value=12,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=result,
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
history = show_gallery_history()
inputs = [
prompt,
negative_prompt,
seed,
width,
height,
prior_num_inference_steps,
# prior_timesteps,
prior_guidance_scale,
decoder_num_inference_steps,
# decoder_timesteps,
decoder_guidance_scale,
num_images_per_prompt,
]
prompt.submit(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=inputs,
outputs=result,
api_name="run",
).then(
fn=fetch_gallery_history, inputs=[prompt, result], outputs=history, queue=False
)
negative_prompt.submit(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=inputs,
outputs=result,
api_name=False,
).then(
fn=fetch_gallery_history, inputs=[prompt, result], outputs=history, queue=False
)
run_button.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=inputs,
outputs=result,
api_name=False,
).then(
fn=fetch_gallery_history, inputs=[prompt, result], outputs=history, queue=False
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|