File size: 5,048 Bytes
de9d198
 
 
 
 
 
 
 
 
 
 
 
 
bd88c3e
3853106
 
 
 
 
de9d198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd88c3e
de9d198
bd88c3e
de9d198
 
 
bd88c3e
 
 
3853106
 
 
 
 
 
 
 
de9d198
 
bd88c3e
de9d198
bd88c3e
de9d198
bd88c3e
de9d198
 
 
bd88c3e
 
de9d198
 
 
bd88c3e
de9d198
 
 
 
 
 
bd88c3e
 
de9d198
 
 
 
 
 
5366491
de9d198
 
12fd800
de9d198
 
 
 
 
 
 
bd88c3e
 
de9d198
 
 
 
 
 
5366491
de9d198
 
bd88c3e
80e4491
de9d198
 
 
 
 
 
a1c7876
de9d198
e9f4989
bd88c3e
 
8f40af2
 
 
 
80e4491
ba79244
bd88c3e
 
80e4491
bd88c3e
80e4491
 
 
 
5e7f076
80e4491
 
 
bd88c3e
 
 
de9d198
bd88c3e
 
 
 
 
de9d198
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from diffusers import DiffusionPipeline, LCMScheduler, AutoencoderTiny
import torch
import os

try:
    import intel_extension_for_pytorch as ipex
except:
    pass

from PIL import Image
import numpy as np
import gradio as gr
import psutil
import time
from sfast.compilers.stable_diffusion_pipeline_compiler import (
    compile,
    CompilationConfig,
)


SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# check if MPS is available OSX only M1/M2/M3 chips
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
device = torch.device(
    "cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu"
)
torch_device = device
torch_dtype = torch.float16

print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
print(f"TORCH_COMPILE: {TORCH_COMPILE}")
print(f"device: {device}")

if mps_available:
    device = torch.device("mps")
    torch_device = "cpu"
    torch_dtype = torch.float32

if SAFETY_CHECKER == "True":
    pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7")
else:
    pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7", safety_checker=None)

pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.unet.to(memory_format=torch.channels_last)
pipe.set_progress_bar_config(disable=True)
pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5")
pipe.fuse_lora()
pipe.to(device=torch_device, dtype=torch_dtype).to(device)


config = CompilationConfig.Default()
config.enable_xformers = True
config.enable_triton = True
config.enable_cuda_graph = True
pipe = compile(pipe, config=config)


def predict(prompt, guidance, steps, seed=1231231):
    generator = torch.manual_seed(seed)
    last_time = time.time()
    results = pipe(
        prompt=prompt,
        generator=generator,
        num_inference_steps=steps,
        guidance_scale=guidance,
        width=512,
        height=512,
        # original_inference_steps=params.lcm_steps,
        output_type="pil",
    )
    print(f"Pipe took {time.time() - last_time} seconds")
    nsfw_content_detected = (
        results.nsfw_content_detected[0]
        if "nsfw_content_detected" in results
        else False
    )
    if nsfw_content_detected:
        gr.Warning("NSFW content detected.")
        return Image.new("RGB", (512, 512))
    return results.images[0]


css = """
#container{
    margin: 0 auto;
    max-width: 40rem;
}
#intro{
    max-width: 100%;
    text-align: center;
    margin: 0 auto;
}
"""
with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="container"):
        gr.Markdown(
            """# SD1.5 Latent Consistency LoRAs
            SD1.5  is loaded with a LCM-LoRA, giving it the super power of doing inference in as little as 4 steps. [Learn more on our blog](#) or [technical report](#).
            """,
            elem_id="intro",
        )
        with gr.Row():
            with gr.Row():
                prompt = gr.Textbox(
                    placeholder="Insert your prompt here:", scale=5, container=False
                )
                generate_bt = gr.Button("Generate", scale=1)

        image = gr.Image(type="filepath")
        with gr.Accordion("Advanced options", open=False):
            guidance = gr.Slider(
                label="Guidance", minimum=0.0, maximum=5, value=0.3, step=0.001
            )
            steps = gr.Slider(label="Steps", value=4, minimum=2, maximum=10, step=1)
            seed = gr.Slider(
                randomize=True, minimum=0, maximum=12013012031030, label="Seed", step=1
            )
        with gr.Accordion("Run with diffusers"):
            gr.Markdown(
                """## Running LCM-LoRAs it with `diffusers`
            ```bash
            pip install diffusers==0.23.0
            ```
            
            ```py
            from diffusers import DiffusionPipeline, LCMScheduler

            pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7").to("cuda") 
            pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
            pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5") #yes, it's a normal LoRA

            results = pipe(
                prompt="The spirit of a tamagotchi wandering in the city of Vienna",
                num_inference_steps=4,
                guidance_scale=0.0,
            )
            results.images[0]
            ```
            """
            )

        inputs = [prompt, guidance, steps, seed]
        generate_bt.click(fn=predict, inputs=inputs, outputs=image, show_progress=False)
        prompt.input(fn=predict, inputs=inputs, outputs=image, show_progress=False)
        guidance.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
        steps.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
        seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)

demo.queue()
demo.launch()