from diffusers import DiffusionPipeline, LCMScheduler, AutoencoderTiny import torch import os try: import intel_extension_for_pytorch as ipex except: pass from PIL import Image import numpy as np import gradio as gr import psutil import time from sfast.compilers.stable_diffusion_pipeline_compiler import ( compile, CompilationConfig, ) SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None) TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None) HF_TOKEN = os.environ.get("HF_TOKEN", None) # check if MPS is available OSX only M1/M2/M3 chips mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available() xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available() device = torch.device( "cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu" ) torch_device = device torch_dtype = torch.float16 print(f"SAFETY_CHECKER: {SAFETY_CHECKER}") print(f"TORCH_COMPILE: {TORCH_COMPILE}") print(f"device: {device}") if mps_available: device = torch.device("mps") torch_device = "cpu" torch_dtype = torch.float32 if SAFETY_CHECKER == "True": pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7") else: pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7", safety_checker=None) pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) pipe.unet.to(memory_format=torch.channels_last) pipe.set_progress_bar_config(disable=True) pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5") pipe.fuse_lora() pipe.to(device=torch_device, dtype=torch_dtype).to(device) config = CompilationConfig.Default() config.enable_xformers = True config.enable_triton = True config.enable_cuda_graph = True pipe = compile(pipe, config=config) def predict(prompt, guidance, steps, seed=1231231): generator = torch.manual_seed(seed) last_time = time.time() results = pipe( prompt=prompt, generator=generator, num_inference_steps=steps, guidance_scale=guidance, width=512, height=512, # original_inference_steps=params.lcm_steps, output_type="pil", ) print(f"Pipe took {time.time() - last_time} seconds") nsfw_content_detected = ( results.nsfw_content_detected[0] if "nsfw_content_detected" in results else False ) if nsfw_content_detected: gr.Warning("NSFW content detected.") return Image.new("RGB", (512, 512)) return results.images[0] css = """ #container{ margin: 0 auto; max-width: 40rem; } #intro{ max-width: 100%; text-align: center; margin: 0 auto; } #container{ margin: 0 auto; max-width: 40rem; } #intro{ max-width: 100%; text-align: center; margin: 0 auto; } div.svelte-vt1mxs { display: flex; position: relative; flex-direction: column } div.svelte-vt1mxs>*,div.svelte-vt1mxs>.form > * { width: var(--size-full) } .gap.svelte-vt1mxs { gap: var(--layout-gap) } .hide.svelte-vt1mxs { display: none } .compact.svelte-vt1mxs>*,.compact.svelte-vt1mxs .box { border-radius: 0 } .compact.svelte-vt1mxs,.panel.svelte-vt1mxs { border: solid var(--panel-border-width) var(--panel-border-color); border-radius: var(--container-radius); background: var(--panel-background-fill); padding: var(--spacing-lg) } div#component-24 { display: none; } div#component-8 {background: #00000024;border: 0;color: #ffffff;backdrop-filter: blur(20px);-webkit-backdrop-filter: blur(20px);border-width: 0 !important;} span.md.svelte-9tftx4 { display: none; } .empty.svelte-lk9eg8.large.unpadded_box { background: none !important; } div#component-26 { display: none; } div#component-7 { background: none; } .wrap.default.full.svelte-119qaqt.hide { background: none !important; } .styler.svelte-iyf88w { background: none !important; } div#component-3 { background: none !important; border: 0; } input.scroll-hide.svelte-1f354aw { overflow: hidden !important; } div#component-5 { border-radius: 40px 0px 0px 40px; background: black !important; opacity: 0.9; } #component-6 { border-radius: 0px 40px 40px 0px; background: linear-gradient(358deg, #ff4d0080, #fff0); color: #ffffffe3; border: 2px #ffffffc2 dashed; border-left: 0; font-size: 30px; letter-spacing:-1px; position: relative; z-index: 1; backdrop-filter: blur(18px); -webkit-backdrop-filter: blur(18px); } div#component-0 { max-width: 100% !important; } .grid-wrap.svelte-1b19cri.fixed-height { max-height: 100% !important; overflow: auto; } footer.svelte-1ax1toq { display: none !important; } input.scroll-hide.svelte-1f354aw { font-size: 26px; padding: 25px; } div#component-4 { margin-top: 230px; margin-bottom: 30px; } gradio-app { background-color: transparent !important; background: url(https://vivawaves.com/wavesweaveslogo.svg) top center no-repeat !important; margin-top: 77px; } label.svelte-1f354aw { } .styler.svelte-iyf88w { } body { background: url(https://vivawaves.com/vivatodaybg2.jpg); background-size: cover; } img.svelte-1b19cri {} .preview.svelte-1b19cri { background: #0000004d !important; border-radius: 20px; padding: 20px; overflow: hidden; } button.svelte-1030q2h { border-radius: 100%; } div.svelte-1030q2h svg { } svg path { } img.svelte-1b19cri { border-radius: 10px; } .form.svelte-sfqy0y { background: #fff0; border-width: 0px; opacity: 0.8; } .gradio-container-3-44-2,.gradio-container-3-44-2 *,.gradio-container-3-44-2 :before,.gradio-container-3-44-2 :after { box-sizing: border-box; border-width: 0; border-style: solid; } div#component-13 { display: none; } footer.svelte-mpyp5e { display: none !important; } div#intro { display: none; } div.svelte-15lo0d8 { display: flex; flex-wrap: wrap; gap: 0; width: var(--size-full); flex-direction: initial; justify-content: center; align-items: baseline; } input.svelte-1f354aw.svelte-1f354aw, textarea.svelte-1f354aw.svelte-1f354aw { display: block; position: relative; outline: none !important; box-shadow: var(--input-shadow); background: var(--input-background-fill); padding: var(--input-padding); width: 100%; color: var(--body-text-color); font-weight: var(--input-text-weight); font-size: large; line-height: initial; border: none; text-size-adjust: auto; font-size: 23px !important; } div#component-24 { display: none; } div#component-8 {background: #00000024;border: 0;color: #ffffff;backdrop-filter: blur(20px);-webkit-backdrop-filter: blur(20px);border-width: 0 !important;} span.md.svelte-9tftx4 { display: none; } .empty.svelte-lk9eg8.large.unpadded_box { background: none !important; } div#component-26 { display: none; } div#component-7 { background: none; } .wrap.default.full.svelte-119qaqt.hide { background: none !important; } .styler.svelte-iyf88w { background: none !important; } div#component-3 { background: none !important; border: 0; } input.scroll-hide.svelte-1f354aw { overflow: hidden !important; } div#component-5 { border-radius: 40px; background: white !important; opacity: 0.9; } #component-6 { border-radius: 0px 40px 40px 0px; background: linear-gradient(358deg, #ff4d0080, #fff0); color: #ffffffe3; border: 2px #ffffffc2 dashed; border-left: 0; font-size: 30px; letter-spacing:-1px; position: relative; z-index: 1; backdrop-filter: blur(18px); -webkit-backdrop-filter: blur(18px); display: none; } div#component-0 { max-width: 100% !important; } .grid-wrap.svelte-1b19cri.fixed-height { max-height: 100% !important; overflow: auto; } footer.svelte-1ax1toq { display: none !important; } input.scroll-hide.svelte-1f354aw { font-size: 26px; padding: 25px; } div#component-4 { margin-top: 230px; margin-bottom: 30px; } gradio-app { background-color: transparent !important; background: url(https://vivawaves.com/wavesweaveslogo.svg) top center no-repeat !important; margin-top: 77px; } label.svelte-1f354aw { } .styler.svelte-iyf88w { } body { background: url(https://vivawaves.com/vivatodaybg2.jpg); background-size: cover; } img.svelte-1b19cri {} .preview.svelte-1b19cri { background: #0000004d !important; border-radius: 20px; padding: 20px; overflow: hidden; } button.svelte-1030q2h { border-radius: 100%; } div.svelte-1030q2h svg { } svg path { } img.svelte-1b19cri { border-radius: 10px; } .form.svelte-sfqy0y { background: #fff0; border-width: 0px; opacity: 0.8; } .gradio-container-3-44-2,.gradio-container-3-44-2 *,.gradio-container-3-44-2 :before,.gradio-container-3-44-2 :after { box-sizing: border-box; border-width: 0; border-style: solid; } div#component-13 { display: none; } footer.svelte-mpyp5e { display: none !important; } div#intro { display: none; } div.svelte-15lo0d8 { display: flex; flex-wrap: wrap; gap: 0 !important; width: var(--size-full); flex-direction: initial; justify-content: center; align-items: baseline; } input.svelte-1f354aw.svelte-1f354aw, textarea.svelte-1f354aw.svelte-1f354aw { display: block; position: relative; outline: none !important; box-shadow: var(--input-shadow); background: var(--input-background-fill); padding: var(--input-padding); width: 100%; color: var(--body-text-color); font-weight: var(--input-text-weight); font-size: large; line-height: initial; border: none; text-size-adjust: auto; font-size: 23px !important; border-radius: 30px; background: white !important; text-align: center; } div#component-8 { margin-bottom: 70px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="container"): gr.Markdown( """# SD1.5 Latent Consistency LoRAs SD1.5 is loaded with a LCM-LoRA, giving it the super power of doing inference in as little as 4 steps. [Learn more on our blog](#) or [technical report](#). """, elem_id="intro", ) with gr.Row(): with gr.Row(): prompt = gr.Textbox( placeholder="Insert your prompt here:", scale=5, container=False ) generate_bt = gr.Button("Generate", scale=1) image = gr.Image(type="filepath") with gr.Accordion("Advanced options", open=False): guidance = gr.Slider( label="Guidance", minimum=0.0, maximum=5, value=0.3, step=0.001 ) steps = gr.Slider(label="Steps", value=4, minimum=2, maximum=10, step=1) seed = gr.Slider( randomize=True, minimum=0, maximum=12013012031030, label="Seed", step=1 ) with gr.Accordion("Run with diffusers"): gr.Markdown( """## Running LCM-LoRAs it with `diffusers` ```bash pip install diffusers==0.23.0 ``` ```py from diffusers import DiffusionPipeline, LCMScheduler pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7").to("cuda") pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5") #yes, it's a normal LoRA results = pipe( prompt="The spirit of a tamagotchi wandering in the city of Vienna", num_inference_steps=4, guidance_scale=0.0, ) results.images[0] ``` """ ) inputs = [prompt, guidance, steps, seed] generate_bt.click(fn=predict, inputs=inputs, outputs=image, show_progress=False) prompt.input(fn=predict, inputs=inputs, outputs=image, show_progress=False) guidance.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) steps.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) demo.queue(api_open=False) demo.launch(show_api=False)