File size: 5,174 Bytes
52fc291
 
c67a6b9
52fc291
c67a6b9
52fc291
c67a6b9
 
 
 
52fc291
 
 
 
 
 
 
 
 
 
 
c67a6b9
 
 
 
52fc291
 
 
65f022f
52fc291
c67a6b9
52fc291
 
 
 
 
 
 
 
 
 
 
 
65f022f
52fc291
 
 
 
 
 
 
 
 
 
 
 
c67a6b9
52fc291
 
 
 
 
 
c67a6b9
 
 
 
 
 
 
 
 
 
 
 
 
52fc291
c67a6b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52fc291
c67a6b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52fc291
c67a6b9
 
 
 
 
 
 
52fc291
c67a6b9
 
 
 
 
 
 
 
 
52fc291
c67a6b9
 
 
 
 
52fc291
c67a6b9
52fc291
 
 
 
 
 
 
 
 
 
 
c67a6b9
 
 
52fc291
 
c67a6b9
 
 
52fc291
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import torch
from diffusers import StableDiffusionXLPipeline
import numpy as np
import gradio as gr
import random
from compel import Compel, ReturnedEmbeddingsType

device = "cuda" if torch.cuda.is_available() else "cpu"

if torch.cuda.is_available():
  torch.cuda.max_memory_allocated(device=device)
  pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
  pipe = pipe.to(device)
else:
  pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
  pipe = pipe.to(device)

pipe.safety_checker = None

pipe.load_lora_weights("artificialguybr/ps1redmond-ps1-game-graphics-lora-for-sdxl", weight_name="PS1Redmond-PS1Game-Playstation1Graphics.safetensors")
lora_activation_words = "playstation 1 graphics, PS1 Game, "

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def infer(conditioning, pooled, neg_conditioning, neg_pooled, height, width, num_inference_steps, guidance_scale, seed, randomize_seed, lora_weight):
  if randomize_seed:
    seed = random.randint(0, MAX_SEED)

  generator = torch.Generator().manual_seed(seed)

  image = pipe(
    prompt_embeds=conditioning, 
    pooled_prompt_embeds=pooled,
    negative_prompt_embeds=neg_conditioning, 
    negative_pooled_prompt_embeds=neg_pooled,
    height=height,
    width=width,
    num_inference_steps=num_inference_steps,
    guidance_scale=guidance_scale,
    generator=generator,
    cross_attention_kwargs={"scale": lora_weight}
  ).images[0]

  return image

def get_embeds(prompt, negative_prompt, height, width, num_inference_steps, guidance_scale, seed, randomize_seed, lora_weight):

  compel = Compel(
    tokenizer=[pipe.tokenizer, pipe.tokenizer_2] ,
    text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
    returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
    requires_pooled=[False, True]
  )

  prompt = lora_activation_words + prompt

  conditioning, pooled = compel(prompt)
  neg_conditioning, neg_pooled = compel(negative_prompt)

  image = infer(conditioning, pooled, neg_conditioning, neg_pooled, height, width, num_inference_steps, guidance_scale, seed, randomize_seed, lora_weight)

  return image

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # Text-to-Image Gradio Template
        Currently running on {device.upper()}.
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=True,
            )
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():
                
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=7.5,
                )
                
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=100,
                    step=1,
                    value=30,
                )
              
            with gr.Row():

                lora_weight = gr.Slider(
                    label="LoRA weight",
                    minimum=0.0,
                    maximum=5.0,
                    step=0.01,
                    value=1,
                )

    run_button.click(
        fn = get_embeds,
        inputs = [prompt, negative_prompt, height, width, num_inference_steps, guidance_scale, seed, randomize_seed, lora_weight],
        outputs = [result]
    )

demo.launch(debug=True)