Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
from scipy.stats import betabinom | |
from torch.nn import functional as F | |
try: | |
from TTS.tts.utils.monotonic_align.core import maximum_path_c | |
CYTHON = True | |
except ModuleNotFoundError: | |
CYTHON = False | |
class StandardScaler: | |
"""StandardScaler for mean-scale normalization with the given mean and scale values.""" | |
def __init__(self, mean: np.ndarray = None, scale: np.ndarray = None) -> None: | |
self.mean_ = mean | |
self.scale_ = scale | |
def set_stats(self, mean, scale): | |
self.mean_ = mean | |
self.scale_ = scale | |
def reset_stats(self): | |
delattr(self, "mean_") | |
delattr(self, "scale_") | |
def transform(self, X): | |
X = np.asarray(X) | |
X -= self.mean_ | |
X /= self.scale_ | |
return X | |
def inverse_transform(self, X): | |
X = np.asarray(X) | |
X *= self.scale_ | |
X += self.mean_ | |
return X | |
# from https://gist.github.com/jihunchoi/f1434a77df9db1bb337417854b398df1 | |
def sequence_mask(sequence_length, max_len=None): | |
"""Create a sequence mask for filtering padding in a sequence tensor. | |
Args: | |
sequence_length (torch.tensor): Sequence lengths. | |
max_len (int, Optional): Maximum sequence length. Defaults to None. | |
Shapes: | |
- mask: :math:`[B, T_max]` | |
""" | |
if max_len is None: | |
max_len = sequence_length.max() | |
seq_range = torch.arange(max_len, dtype=sequence_length.dtype, device=sequence_length.device) | |
# B x T_max | |
return seq_range.unsqueeze(0) < sequence_length.unsqueeze(1) | |
def segment(x: torch.tensor, segment_indices: torch.tensor, segment_size=4, pad_short=False): | |
"""Segment each sample in a batch based on the provided segment indices | |
Args: | |
x (torch.tensor): Input tensor. | |
segment_indices (torch.tensor): Segment indices. | |
segment_size (int): Expected output segment size. | |
pad_short (bool): Pad the end of input tensor with zeros if shorter than the segment size. | |
""" | |
# pad the input tensor if it is shorter than the segment size | |
if pad_short and x.shape[-1] < segment_size: | |
x = torch.nn.functional.pad(x, (0, segment_size - x.size(2))) | |
segments = torch.zeros_like(x[:, :, :segment_size]) | |
for i in range(x.size(0)): | |
index_start = segment_indices[i] | |
index_end = index_start + segment_size | |
x_i = x[i] | |
if pad_short and index_end >= x.size(2): | |
# pad the sample if it is shorter than the segment size | |
x_i = torch.nn.functional.pad(x_i, (0, (index_end + 1) - x.size(2))) | |
segments[i] = x_i[:, index_start:index_end] | |
return segments | |
def rand_segments( | |
x: torch.tensor, x_lengths: torch.tensor = None, segment_size=4, let_short_samples=False, pad_short=False | |
): | |
"""Create random segments based on the input lengths. | |
Args: | |
x (torch.tensor): Input tensor. | |
x_lengths (torch.tensor): Input lengths. | |
segment_size (int): Expected output segment size. | |
let_short_samples (bool): Allow shorter samples than the segment size. | |
pad_short (bool): Pad the end of input tensor with zeros if shorter than the segment size. | |
Shapes: | |
- x: :math:`[B, C, T]` | |
- x_lengths: :math:`[B]` | |
""" | |
_x_lenghts = x_lengths.clone() | |
B, _, T = x.size() | |
if pad_short: | |
if T < segment_size: | |
x = torch.nn.functional.pad(x, (0, segment_size - T)) | |
T = segment_size | |
if _x_lenghts is None: | |
_x_lenghts = T | |
len_diff = _x_lenghts - segment_size | |
if let_short_samples: | |
_x_lenghts[len_diff < 0] = segment_size | |
len_diff = _x_lenghts - segment_size | |
else: | |
assert all( | |
len_diff > 0 | |
), f" [!] At least one sample is shorter than the segment size ({segment_size}). \n {_x_lenghts}" | |
segment_indices = (torch.rand([B]).type_as(x) * (len_diff + 1)).long() | |
ret = segment(x, segment_indices, segment_size, pad_short=pad_short) | |
return ret, segment_indices | |
def average_over_durations(values, durs): | |
"""Average values over durations. | |
Shapes: | |
- values: :math:`[B, 1, T_de]` | |
- durs: :math:`[B, T_en]` | |
- avg: :math:`[B, 1, T_en]` | |
""" | |
durs_cums_ends = torch.cumsum(durs, dim=1).long() | |
durs_cums_starts = torch.nn.functional.pad(durs_cums_ends[:, :-1], (1, 0)) | |
values_nonzero_cums = torch.nn.functional.pad(torch.cumsum(values != 0.0, dim=2), (1, 0)) | |
values_cums = torch.nn.functional.pad(torch.cumsum(values, dim=2), (1, 0)) | |
bs, l = durs_cums_ends.size() | |
n_formants = values.size(1) | |
dcs = durs_cums_starts[:, None, :].expand(bs, n_formants, l) | |
dce = durs_cums_ends[:, None, :].expand(bs, n_formants, l) | |
values_sums = (torch.gather(values_cums, 2, dce) - torch.gather(values_cums, 2, dcs)).float() | |
values_nelems = (torch.gather(values_nonzero_cums, 2, dce) - torch.gather(values_nonzero_cums, 2, dcs)).float() | |
avg = torch.where(values_nelems == 0.0, values_nelems, values_sums / values_nelems) | |
return avg | |
def convert_pad_shape(pad_shape): | |
l = pad_shape[::-1] | |
pad_shape = [item for sublist in l for item in sublist] | |
return pad_shape | |
def generate_path(duration, mask): | |
""" | |
Shapes: | |
- duration: :math:`[B, T_en]` | |
- mask: :math:'[B, T_en, T_de]` | |
- path: :math:`[B, T_en, T_de]` | |
""" | |
b, t_x, t_y = mask.shape | |
cum_duration = torch.cumsum(duration, 1) | |
cum_duration_flat = cum_duration.view(b * t_x) | |
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype) | |
path = path.view(b, t_x, t_y) | |
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1] | |
path = path * mask | |
return path | |
def maximum_path(value, mask): | |
if CYTHON: | |
return maximum_path_cython(value, mask) | |
return maximum_path_numpy(value, mask) | |
def maximum_path_cython(value, mask): | |
"""Cython optimised version. | |
Shapes: | |
- value: :math:`[B, T_en, T_de]` | |
- mask: :math:`[B, T_en, T_de]` | |
""" | |
value = value * mask | |
device = value.device | |
dtype = value.dtype | |
value = value.data.cpu().numpy().astype(np.float32) | |
path = np.zeros_like(value).astype(np.int32) | |
mask = mask.data.cpu().numpy() | |
t_x_max = mask.sum(1)[:, 0].astype(np.int32) | |
t_y_max = mask.sum(2)[:, 0].astype(np.int32) | |
maximum_path_c(path, value, t_x_max, t_y_max) | |
return torch.from_numpy(path).to(device=device, dtype=dtype) | |
def maximum_path_numpy(value, mask, max_neg_val=None): | |
""" | |
Monotonic alignment search algorithm | |
Numpy-friendly version. It's about 4 times faster than torch version. | |
value: [b, t_x, t_y] | |
mask: [b, t_x, t_y] | |
""" | |
if max_neg_val is None: | |
max_neg_val = -np.inf # Patch for Sphinx complaint | |
value = value * mask | |
device = value.device | |
dtype = value.dtype | |
value = value.cpu().detach().numpy() | |
mask = mask.cpu().detach().numpy().astype(bool) | |
b, t_x, t_y = value.shape | |
direction = np.zeros(value.shape, dtype=np.int64) | |
v = np.zeros((b, t_x), dtype=np.float32) | |
x_range = np.arange(t_x, dtype=np.float32).reshape(1, -1) | |
for j in range(t_y): | |
v0 = np.pad(v, [[0, 0], [1, 0]], mode="constant", constant_values=max_neg_val)[:, :-1] | |
v1 = v | |
max_mask = v1 >= v0 | |
v_max = np.where(max_mask, v1, v0) | |
direction[:, :, j] = max_mask | |
index_mask = x_range <= j | |
v = np.where(index_mask, v_max + value[:, :, j], max_neg_val) | |
direction = np.where(mask, direction, 1) | |
path = np.zeros(value.shape, dtype=np.float32) | |
index = mask[:, :, 0].sum(1).astype(np.int64) - 1 | |
index_range = np.arange(b) | |
for j in reversed(range(t_y)): | |
path[index_range, index, j] = 1 | |
index = index + direction[index_range, index, j] - 1 | |
path = path * mask.astype(np.float32) | |
path = torch.from_numpy(path).to(device=device, dtype=dtype) | |
return path | |
def beta_binomial_prior_distribution(phoneme_count, mel_count, scaling_factor=1.0): | |
P, M = phoneme_count, mel_count | |
x = np.arange(0, P) | |
mel_text_probs = [] | |
for i in range(1, M + 1): | |
a, b = scaling_factor * i, scaling_factor * (M + 1 - i) | |
rv = betabinom(P, a, b) | |
mel_i_prob = rv.pmf(x) | |
mel_text_probs.append(mel_i_prob) | |
return np.array(mel_text_probs) | |
def compute_attn_prior(x_len, y_len, scaling_factor=1.0): | |
"""Compute attention priors for the alignment network.""" | |
attn_prior = beta_binomial_prior_distribution( | |
x_len, | |
y_len, | |
scaling_factor, | |
) | |
return attn_prior # [y_len, x_len] | |