Spaces:
Runtime error
Runtime error
#!flask/bin/python | |
import argparse | |
import io | |
import json | |
import os | |
import sys | |
from pathlib import Path | |
from threading import Lock | |
from typing import Union | |
from urllib.parse import parse_qs | |
from flask import Flask, render_template, render_template_string, request, send_file | |
from TTS.config import load_config | |
from TTS.utils.manage import ModelManager | |
from TTS.utils.synthesizer import Synthesizer | |
def create_argparser(): | |
def convert_boolean(x): | |
return x.lower() in ["true", "1", "yes"] | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--list_models", | |
type=convert_boolean, | |
nargs="?", | |
const=True, | |
default=False, | |
help="list available pre-trained tts and vocoder models.", | |
) | |
parser.add_argument( | |
"--model_name", | |
type=str, | |
default="tts_models/en/ljspeech/tacotron2-DDC", | |
help="Name of one of the pre-trained tts models in format <language>/<dataset>/<model_name>", | |
) | |
parser.add_argument("--vocoder_name", type=str, default=None, help="name of one of the released vocoder models.") | |
# Args for running custom models | |
parser.add_argument("--config_path", default=None, type=str, help="Path to model config file.") | |
parser.add_argument( | |
"--model_path", | |
type=str, | |
default=None, | |
help="Path to model file.", | |
) | |
parser.add_argument( | |
"--vocoder_path", | |
type=str, | |
help="Path to vocoder model file. If it is not defined, model uses GL as vocoder. Please make sure that you installed vocoder library before (WaveRNN).", | |
default=None, | |
) | |
parser.add_argument("--vocoder_config_path", type=str, help="Path to vocoder model config file.", default=None) | |
parser.add_argument("--speakers_file_path", type=str, help="JSON file for multi-speaker model.", default=None) | |
parser.add_argument("--port", type=int, default=5002, help="port to listen on.") | |
parser.add_argument("--use_cuda", type=convert_boolean, default=False, help="true to use CUDA.") | |
parser.add_argument("--debug", type=convert_boolean, default=False, help="true to enable Flask debug mode.") | |
parser.add_argument("--show_details", type=convert_boolean, default=False, help="Generate model detail page.") | |
return parser | |
# parse the args | |
args = create_argparser().parse_args() | |
path = Path(__file__).parent / "../.models.json" | |
manager = ModelManager(path) | |
if args.list_models: | |
manager.list_models() | |
sys.exit() | |
# update in-use models to the specified released models. | |
model_path = None | |
config_path = None | |
speakers_file_path = None | |
vocoder_path = None | |
vocoder_config_path = None | |
# CASE1: list pre-trained TTS models | |
if args.list_models: | |
manager.list_models() | |
sys.exit() | |
# CASE2: load pre-trained model paths | |
if args.model_name is not None and not args.model_path: | |
model_path, config_path, model_item = manager.download_model(args.model_name) | |
args.vocoder_name = model_item["default_vocoder"] if args.vocoder_name is None else args.vocoder_name | |
if args.vocoder_name is not None and not args.vocoder_path: | |
vocoder_path, vocoder_config_path, _ = manager.download_model(args.vocoder_name) | |
# CASE3: set custom model paths | |
if args.model_path is not None: | |
model_path = args.model_path | |
config_path = args.config_path | |
speakers_file_path = args.speakers_file_path | |
if args.vocoder_path is not None: | |
vocoder_path = args.vocoder_path | |
vocoder_config_path = args.vocoder_config_path | |
# load models | |
synthesizer = Synthesizer( | |
tts_checkpoint=model_path, | |
tts_config_path=config_path, | |
tts_speakers_file=speakers_file_path, | |
tts_languages_file=None, | |
vocoder_checkpoint=vocoder_path, | |
vocoder_config=vocoder_config_path, | |
encoder_checkpoint="", | |
encoder_config="", | |
use_cuda=args.use_cuda, | |
) | |
use_multi_speaker = hasattr(synthesizer.tts_model, "num_speakers") and ( | |
synthesizer.tts_model.num_speakers > 1 or synthesizer.tts_speakers_file is not None | |
) | |
speaker_manager = getattr(synthesizer.tts_model, "speaker_manager", None) | |
use_multi_language = hasattr(synthesizer.tts_model, "num_languages") and ( | |
synthesizer.tts_model.num_languages > 1 or synthesizer.tts_languages_file is not None | |
) | |
language_manager = getattr(synthesizer.tts_model, "language_manager", None) | |
# TODO: set this from SpeakerManager | |
use_gst = synthesizer.tts_config.get("use_gst", False) | |
app = Flask(__name__) | |
def style_wav_uri_to_dict(style_wav: str) -> Union[str, dict]: | |
"""Transform an uri style_wav, in either a string (path to wav file to be use for style transfer) | |
or a dict (gst tokens/values to be use for styling) | |
Args: | |
style_wav (str): uri | |
Returns: | |
Union[str, dict]: path to file (str) or gst style (dict) | |
""" | |
if style_wav: | |
if os.path.isfile(style_wav) and style_wav.endswith(".wav"): | |
return style_wav # style_wav is a .wav file located on the server | |
style_wav = json.loads(style_wav) | |
return style_wav # style_wav is a gst dictionary with {token1_id : token1_weigth, ...} | |
return None | |
def index(): | |
return render_template( | |
"index.html", | |
show_details=args.show_details, | |
use_multi_speaker=use_multi_speaker, | |
use_multi_language=use_multi_language, | |
speaker_ids=speaker_manager.name_to_id if speaker_manager is not None else None, | |
language_ids=language_manager.name_to_id if language_manager is not None else None, | |
use_gst=use_gst, | |
) | |
def details(): | |
if args.config_path is not None and os.path.isfile(args.config_path): | |
model_config = load_config(args.config_path) | |
else: | |
if args.model_name is not None: | |
model_config = load_config(config_path) | |
if args.vocoder_config_path is not None and os.path.isfile(args.vocoder_config_path): | |
vocoder_config = load_config(args.vocoder_config_path) | |
else: | |
if args.vocoder_name is not None: | |
vocoder_config = load_config(vocoder_config_path) | |
else: | |
vocoder_config = None | |
return render_template( | |
"details.html", | |
show_details=args.show_details, | |
model_config=model_config, | |
vocoder_config=vocoder_config, | |
args=args.__dict__, | |
) | |
lock = Lock() | |
def tts(): | |
with lock: | |
text = request.headers.get("text") or request.values.get("text", "") | |
speaker_idx = request.headers.get("speaker-id") or request.values.get("speaker_id", "") | |
language_idx = request.headers.get("language-id") or request.values.get("language_id", "") | |
style_wav = request.headers.get("style-wav") or request.values.get("style_wav", "") | |
style_wav = style_wav_uri_to_dict(style_wav) | |
print(f" > Model input: {text}") | |
print(f" > Speaker Idx: {speaker_idx}") | |
print(f" > Language Idx: {language_idx}") | |
wavs = synthesizer.tts(text, speaker_name=speaker_idx, language_name=language_idx, style_wav=style_wav) | |
out = io.BytesIO() | |
synthesizer.save_wav(wavs, out) | |
return send_file(out, mimetype="audio/wav") | |
# Basic MaryTTS compatibility layer | |
def mary_tts_api_locales(): | |
"""MaryTTS-compatible /locales endpoint""" | |
# NOTE: We currently assume there is only one model active at the same time | |
if args.model_name is not None: | |
model_details = args.model_name.split("/") | |
else: | |
model_details = ["", "en", "", "default"] | |
return render_template_string("{{ locale }}\n", locale=model_details[1]) | |
def mary_tts_api_voices(): | |
"""MaryTTS-compatible /voices endpoint""" | |
# NOTE: We currently assume there is only one model active at the same time | |
if args.model_name is not None: | |
model_details = args.model_name.split("/") | |
else: | |
model_details = ["", "en", "", "default"] | |
return render_template_string( | |
"{{ name }} {{ locale }} {{ gender }}\n", name=model_details[3], locale=model_details[1], gender="u" | |
) | |
def mary_tts_api_process(): | |
"""MaryTTS-compatible /process endpoint""" | |
with lock: | |
if request.method == "POST": | |
data = parse_qs(request.get_data(as_text=True)) | |
# NOTE: we ignore param. LOCALE and VOICE for now since we have only one active model | |
text = data.get("INPUT_TEXT", [""])[0] | |
else: | |
text = request.args.get("INPUT_TEXT", "") | |
print(f" > Model input: {text}") | |
wavs = synthesizer.tts(text) | |
out = io.BytesIO() | |
synthesizer.save_wav(wavs, out) | |
return send_file(out, mimetype="audio/wav") | |
def main(): | |
app.run(debug=args.debug, host="::", port=args.port) | |
if __name__ == "__main__": | |
main() | |