|
import tensorflow as tf |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import timm |
|
from torchvision import transforms |
|
import os |
|
|
|
import requests |
|
import json |
|
|
|
classes = ['apple pie', 'baby back ribs', 'baklava', 'beef carpaccio', 'beef tartare', |
|
'beet salad', 'beignets', 'bibimbap', 'bread pudding', 'breakfast burrito', |
|
'bruschetta', 'caesar_salad', 'cannoli', 'caprese salad', 'carrot cake', |
|
'ceviche', 'cheese plate', 'cheesecake', 'chicken curry', |
|
'chicken quesadilla', 'chicken wings', 'chocolate cake', 'chocolate mousse', |
|
'churros', 'clam chowder', 'club sandwich', 'crab cakes', 'creme brulee', |
|
'croque madame', 'cup cakes', 'deviled eggs', 'donuts', 'dumplings', 'edamame', |
|
'eggs benedict', 'escargots', 'falafel', 'filet mignon', 'fish and chips', |
|
'foie gras', 'french fries', 'french onion soup', 'french toast', |
|
'fried calamari', 'fried rice', 'frozen yogurt', 'garlic bread', 'gnocchi', |
|
'greek salad', 'grilled cheese sandwich', 'grilled salmon', 'guacamole', |
|
'gyoza', 'hamburger', 'hot and sour soup', 'hot dog', 'huevos rancheros', |
|
'hummus', 'ice cream', 'lasagna', 'lobster bisque', 'lobster roll sandwich', |
|
'macaroni and cheese', 'macarons', 'miso soup', 'mussels', 'nachos', |
|
'omelette', 'onion rings', 'oysters', 'pad thai', 'paella', 'pancakes', |
|
'panna cotta', 'peking duck', 'pho', 'pizza', 'pork chop', 'poutine', |
|
'prime rib', 'pulled pork sandwich', 'ramen', 'ravioli', 'red velvet cake', |
|
'risotto', 'samosa', 'sashimi', 'scallops', 'seaweed salad', |
|
'shrimp and grits', 'spaghetti bolognese', 'spaghetti carbonara', |
|
'spring rolls', 'steak', 'strawberry_shortcake', 'sushi', 'tacos', 'takoyaki', |
|
'tiramisu', 'tuna tartare', 'waffles'] |
|
|
|
|
|
|
|
|
|
|
|
def load_prepare_image_tf(filepath, img_size, rescale=False): |
|
img = tf.io.decode_image(filepath, channels=3) |
|
img = tf.image.resize(img, img_size) |
|
|
|
if rescale: |
|
return img/255. |
|
else: |
|
return img |
|
|
|
def model_pred_tf(model_path, img, class_names=classes): |
|
|
|
interpreter = tf.lite.Interpreter(model_path=model_path) |
|
|
|
interpreter.allocate_tensors() |
|
|
|
input_tensor= np.array(np.expand_dims(img,0), dtype=np.float32) |
|
input_index = interpreter.get_input_details()[0]["index"] |
|
|
|
|
|
interpreter.set_tensor(input_index, input_tensor) |
|
|
|
|
|
interpreter.invoke() |
|
output_details = interpreter.get_output_details() |
|
|
|
|
|
output_data = interpreter.get_tensor(output_details[0]['index']) |
|
|
|
pred = output_data.argmax() |
|
|
|
food_name = class_names[pred] |
|
|
|
return food_name |
|
|
|
|
|
|
|
|
|
|
|
def get_model_pt(model_path): |
|
model = timm.create_model('vit_base_patch16_224', pretrained=False) |
|
model.head = nn.Linear(in_features=768, out_features=len(classes), bias=True) |
|
model.load_state_dict(torch.load(model_path, map_location='cpu')) |
|
return model |
|
|
|
def load_prepare_image_pt(input_image): |
|
normalize = transforms.Normalize( |
|
[0.485, 0.456, 0.406], |
|
[0.229, 0.224, 0.225] |
|
) |
|
img_transform = transforms.Compose([ |
|
transforms.Resize((225, 225)), |
|
transforms.CenterCrop(224), |
|
transforms.ToTensor(), |
|
normalize, |
|
]) |
|
input_image = img_transform(input_image).unsqueeze(0) |
|
return input_image |
|
|
|
|
|
def model_pred_pt(input_image, model_path): |
|
model = get_model_pt(model_path) |
|
probs = model(input_image) |
|
y_preds = torch.softmax(probs, dim=1).detach().numpy().argmax() |
|
pred = classes[y_preds] |
|
return pred |
|
|
|
def fetch_recipe(food_name): |
|
url = "https://recipesapi2.p.rapidapi.com/recipes/"+food_name |
|
querystring = {"maxRecipes":"1"} |
|
|
|
headers = { |
|
'x-rapidapi-host': "recipesapi2.p.rapidapi.com", |
|
'x-rapidapi-key': "f6f6823b91msh9e92fed91d5356ap136f5djsn494d8f582fb3" |
|
} |
|
|
|
response = requests.request("GET", url, headers=headers, params=querystring) |
|
json_data = json.loads(response.text) |
|
|
|
recipe_data = json_data['data'][0] |
|
|
|
return recipe_data |