init
Browse files- helper_functions.py +288 -0
helper_functions.py
ADDED
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### We create a bunch of helpful functions throughout the course.
|
2 |
+
### Storing them here so they're easily accessible.
|
3 |
+
|
4 |
+
import tensorflow as tf
|
5 |
+
|
6 |
+
# Create a function to import an image and resize it to be able to be used with our model
|
7 |
+
def load_and_prep_image(filename, img_shape=224, scale=True):
|
8 |
+
"""
|
9 |
+
Reads in an image from filename, turns it into a tensor and reshapes into
|
10 |
+
(224, 224, 3).
|
11 |
+
|
12 |
+
Parameters
|
13 |
+
----------
|
14 |
+
filename (str): string filename of target image
|
15 |
+
img_shape (int): size to resize target image to, default 224
|
16 |
+
scale (bool): whether to scale pixel values to range(0, 1), default True
|
17 |
+
"""
|
18 |
+
# Read in the image
|
19 |
+
img = tf.io.read_file(filename)
|
20 |
+
# Decode it into a tensor
|
21 |
+
img = tf.image.decode_jpeg(img)
|
22 |
+
# Resize the image
|
23 |
+
img = tf.image.resize(img, [img_shape, img_shape])
|
24 |
+
if scale:
|
25 |
+
# Rescale the image (get all values between 0 and 1)
|
26 |
+
return img/255.
|
27 |
+
else:
|
28 |
+
return img
|
29 |
+
|
30 |
+
# Note: The following confusion matrix code is a remix of Scikit-Learn's
|
31 |
+
# plot_confusion_matrix function - https://scikit-learn.org/stable/modules/generated/sklearn.metrics.plot_confusion_matrix.html
|
32 |
+
import itertools
|
33 |
+
import matplotlib.pyplot as plt
|
34 |
+
import numpy as np
|
35 |
+
from sklearn.metrics import confusion_matrix
|
36 |
+
|
37 |
+
# Our function needs a different name to sklearn's plot_confusion_matrix
|
38 |
+
def make_confusion_matrix(y_true, y_pred, classes=None, figsize=(10, 10), text_size=15, norm=False, savefig=False):
|
39 |
+
"""Makes a labelled confusion matrix comparing predictions and ground truth labels.
|
40 |
+
|
41 |
+
If classes is passed, confusion matrix will be labelled, if not, integer class values
|
42 |
+
will be used.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
y_true: Array of truth labels (must be same shape as y_pred).
|
46 |
+
y_pred: Array of predicted labels (must be same shape as y_true).
|
47 |
+
classes: Array of class labels (e.g. string form). If `None`, integer labels are used.
|
48 |
+
figsize: Size of output figure (default=(10, 10)).
|
49 |
+
text_size: Size of output figure text (default=15).
|
50 |
+
norm: normalize values or not (default=False).
|
51 |
+
savefig: save confusion matrix to file (default=False).
|
52 |
+
|
53 |
+
Returns:
|
54 |
+
A labelled confusion matrix plot comparing y_true and y_pred.
|
55 |
+
|
56 |
+
Example usage:
|
57 |
+
make_confusion_matrix(y_true=test_labels, # ground truth test labels
|
58 |
+
y_pred=y_preds, # predicted labels
|
59 |
+
classes=class_names, # array of class label names
|
60 |
+
figsize=(15, 15),
|
61 |
+
text_size=10)
|
62 |
+
"""
|
63 |
+
# Create the confustion matrix
|
64 |
+
cm = confusion_matrix(y_true, y_pred)
|
65 |
+
cm_norm = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] # normalize it
|
66 |
+
n_classes = cm.shape[0] # find the number of classes we're dealing with
|
67 |
+
|
68 |
+
# Plot the figure and make it pretty
|
69 |
+
fig, ax = plt.subplots(figsize=figsize)
|
70 |
+
cax = ax.matshow(cm, cmap=plt.cm.Blues) # colors will represent how 'correct' a class is, darker == better
|
71 |
+
fig.colorbar(cax)
|
72 |
+
|
73 |
+
# Are there a list of classes?
|
74 |
+
if classes:
|
75 |
+
labels = classes
|
76 |
+
else:
|
77 |
+
labels = np.arange(cm.shape[0])
|
78 |
+
|
79 |
+
# Label the axes
|
80 |
+
ax.set(title="Confusion Matrix",
|
81 |
+
xlabel="Predicted label",
|
82 |
+
ylabel="True label",
|
83 |
+
xticks=np.arange(n_classes), # create enough axis slots for each class
|
84 |
+
yticks=np.arange(n_classes),
|
85 |
+
xticklabels=labels, # axes will labeled with class names (if they exist) or ints
|
86 |
+
yticklabels=labels)
|
87 |
+
|
88 |
+
# Make x-axis labels appear on bottom
|
89 |
+
ax.xaxis.set_label_position("bottom")
|
90 |
+
ax.xaxis.tick_bottom()
|
91 |
+
|
92 |
+
# Set the threshold for different colors
|
93 |
+
threshold = (cm.max() + cm.min()) / 2.
|
94 |
+
|
95 |
+
# Plot the text on each cell
|
96 |
+
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
|
97 |
+
if norm:
|
98 |
+
plt.text(j, i, f"{cm[i, j]} ({cm_norm[i, j]*100:.1f}%)",
|
99 |
+
horizontalalignment="center",
|
100 |
+
color="white" if cm[i, j] > threshold else "black",
|
101 |
+
size=text_size)
|
102 |
+
else:
|
103 |
+
plt.text(j, i, f"{cm[i, j]}",
|
104 |
+
horizontalalignment="center",
|
105 |
+
color="white" if cm[i, j] > threshold else "black",
|
106 |
+
size=text_size)
|
107 |
+
|
108 |
+
# Save the figure to the current working directory
|
109 |
+
if savefig:
|
110 |
+
fig.savefig("confusion_matrix.png")
|
111 |
+
|
112 |
+
# Make a function to predict on images and plot them (works with multi-class)
|
113 |
+
def pred_and_plot(model, filename, class_names):
|
114 |
+
"""
|
115 |
+
Imports an image located at filename, makes a prediction on it with
|
116 |
+
a trained model and plots the image with the predicted class as the title.
|
117 |
+
"""
|
118 |
+
# Import the target image and preprocess it
|
119 |
+
img = load_and_prep_image(filename)
|
120 |
+
|
121 |
+
# Make a prediction
|
122 |
+
pred = model.predict(tf.expand_dims(img, axis=0))
|
123 |
+
|
124 |
+
# Get the predicted class
|
125 |
+
if len(pred[0]) > 1: # check for multi-class
|
126 |
+
pred_class = class_names[pred.argmax()] # if more than one output, take the max
|
127 |
+
else:
|
128 |
+
pred_class = class_names[int(tf.round(pred)[0][0])] # if only one output, round
|
129 |
+
|
130 |
+
# Plot the image and predicted class
|
131 |
+
plt.imshow(img)
|
132 |
+
plt.title(f"Prediction: {pred_class}")
|
133 |
+
plt.axis(False);
|
134 |
+
|
135 |
+
import datetime
|
136 |
+
|
137 |
+
def create_tensorboard_callback(dir_name, experiment_name):
|
138 |
+
"""
|
139 |
+
Creates a TensorBoard callback instand to store log files.
|
140 |
+
|
141 |
+
Stores log files with the filepath:
|
142 |
+
"dir_name/experiment_name/current_datetime/"
|
143 |
+
|
144 |
+
Args:
|
145 |
+
dir_name: target directory to store TensorBoard log files
|
146 |
+
experiment_name: name of experiment directory (e.g. efficientnet_model_1)
|
147 |
+
"""
|
148 |
+
log_dir = dir_name + "/" + experiment_name + "/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
149 |
+
tensorboard_callback = tf.keras.callbacks.TensorBoard(
|
150 |
+
log_dir=log_dir
|
151 |
+
)
|
152 |
+
print(f"Saving TensorBoard log files to: {log_dir}")
|
153 |
+
return tensorboard_callback
|
154 |
+
|
155 |
+
# Plot the validation and training data separately
|
156 |
+
import matplotlib.pyplot as plt
|
157 |
+
|
158 |
+
def plot_loss_curves(history):
|
159 |
+
"""
|
160 |
+
Returns separate loss curves for training and validation metrics.
|
161 |
+
|
162 |
+
Args:
|
163 |
+
history: TensorFlow model History object (see: https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/History)
|
164 |
+
"""
|
165 |
+
loss = history.history['loss']
|
166 |
+
val_loss = history.history['val_loss']
|
167 |
+
|
168 |
+
accuracy = history.history['accuracy']
|
169 |
+
val_accuracy = history.history['val_accuracy']
|
170 |
+
|
171 |
+
epochs = range(len(history.history['loss']))
|
172 |
+
|
173 |
+
# Plot loss
|
174 |
+
plt.plot(epochs, loss, label='training_loss')
|
175 |
+
plt.plot(epochs, val_loss, label='val_loss')
|
176 |
+
plt.title('Loss')
|
177 |
+
plt.xlabel('Epochs')
|
178 |
+
plt.legend()
|
179 |
+
|
180 |
+
# Plot accuracy
|
181 |
+
plt.figure()
|
182 |
+
plt.plot(epochs, accuracy, label='training_accuracy')
|
183 |
+
plt.plot(epochs, val_accuracy, label='val_accuracy')
|
184 |
+
plt.title('Accuracy')
|
185 |
+
plt.xlabel('Epochs')
|
186 |
+
plt.legend();
|
187 |
+
|
188 |
+
def compare_historys(original_history, new_history, initial_epochs=5):
|
189 |
+
"""
|
190 |
+
Compares two TensorFlow model History objects.
|
191 |
+
|
192 |
+
Args:
|
193 |
+
original_history: History object from original model (before new_history)
|
194 |
+
new_history: History object from continued model training (after original_history)
|
195 |
+
initial_epochs: Number of epochs in original_history (new_history plot starts from here)
|
196 |
+
"""
|
197 |
+
|
198 |
+
# Get original history measurements
|
199 |
+
acc = original_history.history["accuracy"]
|
200 |
+
loss = original_history.history["loss"]
|
201 |
+
|
202 |
+
val_acc = original_history.history["val_accuracy"]
|
203 |
+
val_loss = original_history.history["val_loss"]
|
204 |
+
|
205 |
+
# Combine original history with new history
|
206 |
+
total_acc = acc + new_history.history["accuracy"]
|
207 |
+
total_loss = loss + new_history.history["loss"]
|
208 |
+
|
209 |
+
total_val_acc = val_acc + new_history.history["val_accuracy"]
|
210 |
+
total_val_loss = val_loss + new_history.history["val_loss"]
|
211 |
+
|
212 |
+
# Make plots
|
213 |
+
plt.figure(figsize=(8, 8))
|
214 |
+
plt.subplot(2, 1, 1)
|
215 |
+
plt.plot(total_acc, label='Training Accuracy')
|
216 |
+
plt.plot(total_val_acc, label='Validation Accuracy')
|
217 |
+
plt.plot([initial_epochs-1, initial_epochs-1],
|
218 |
+
plt.ylim(), label='Start Fine Tuning') # reshift plot around epochs
|
219 |
+
plt.legend(loc='lower right')
|
220 |
+
plt.title('Training and Validation Accuracy')
|
221 |
+
|
222 |
+
plt.subplot(2, 1, 2)
|
223 |
+
plt.plot(total_loss, label='Training Loss')
|
224 |
+
plt.plot(total_val_loss, label='Validation Loss')
|
225 |
+
plt.plot([initial_epochs-1, initial_epochs-1],
|
226 |
+
plt.ylim(), label='Start Fine Tuning') # reshift plot around epochs
|
227 |
+
plt.legend(loc='upper right')
|
228 |
+
plt.title('Training and Validation Loss')
|
229 |
+
plt.xlabel('epoch')
|
230 |
+
plt.show()
|
231 |
+
|
232 |
+
# Create function to unzip a zipfile into current working directory
|
233 |
+
# (since we're going to be downloading and unzipping a few files)
|
234 |
+
import zipfile
|
235 |
+
|
236 |
+
def unzip_data(filename):
|
237 |
+
"""
|
238 |
+
Unzips filename into the current working directory.
|
239 |
+
|
240 |
+
Args:
|
241 |
+
filename (str): a filepath to a target zip folder to be unzipped.
|
242 |
+
"""
|
243 |
+
zip_ref = zipfile.ZipFile(filename, "r")
|
244 |
+
zip_ref.extractall()
|
245 |
+
zip_ref.close()
|
246 |
+
|
247 |
+
# Walk through an image classification directory and find out how many files (images)
|
248 |
+
# are in each subdirectory.
|
249 |
+
import os
|
250 |
+
|
251 |
+
def walk_through_dir(dir_path):
|
252 |
+
"""
|
253 |
+
Walks through dir_path returning its contents.
|
254 |
+
|
255 |
+
Args:
|
256 |
+
dir_path (str): target directory
|
257 |
+
|
258 |
+
Returns:
|
259 |
+
A print out of:
|
260 |
+
number of subdiretories in dir_path
|
261 |
+
number of images (files) in each subdirectory
|
262 |
+
name of each subdirectory
|
263 |
+
"""
|
264 |
+
for dirpath, dirnames, filenames in os.walk(dir_path):
|
265 |
+
print(f"There are {len(dirnames)} directories and {len(filenames)} images in '{dirpath}'.")
|
266 |
+
|
267 |
+
# Function to evaluate: accuracy, precision, recall, f1-score
|
268 |
+
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
|
269 |
+
|
270 |
+
def calculate_results(y_true, y_pred):
|
271 |
+
"""
|
272 |
+
Calculates model accuracy, precision, recall and f1 score of a binary classification model.
|
273 |
+
|
274 |
+
Args:
|
275 |
+
y_true: true labels in the form of a 1D array
|
276 |
+
y_pred: predicted labels in the form of a 1D array
|
277 |
+
|
278 |
+
Returns a dictionary of accuracy, precision, recall, f1-score.
|
279 |
+
"""
|
280 |
+
# Calculate model accuracy
|
281 |
+
model_accuracy = accuracy_score(y_true, y_pred) * 100
|
282 |
+
# Calculate model precision, recall and f1 score using "weighted average
|
283 |
+
model_precision, model_recall, model_f1, _ = precision_recall_fscore_support(y_true, y_pred, average="weighted")
|
284 |
+
model_results = {"accuracy": model_accuracy,
|
285 |
+
"precision": model_precision,
|
286 |
+
"recall": model_recall,
|
287 |
+
"f1": model_f1}
|
288 |
+
return model_results
|