init
Browse files
utils.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
import numpy as np
|
3 |
+
import os
|
4 |
+
|
5 |
+
import requests
|
6 |
+
import json
|
7 |
+
# def view_and_predict(target_dir, target_class, model_path):
|
8 |
+
|
9 |
+
# # Reading image and plotting image
|
10 |
+
# img = tf.io.read_file(target_folder + '/' + random_image[0])
|
11 |
+
# img = tf.io.decode_image(img)
|
12 |
+
# img = tf.image.resize(img,(224,224))
|
13 |
+
# img_show = img/255.
|
14 |
+
|
15 |
+
# pred = model_pred(model_path, img, class_names)
|
16 |
+
|
17 |
+
# plt.imshow(img_show)
|
18 |
+
# plt.title(f"Real Label: {target_class}, prediction: {pred}")
|
19 |
+
# plt.axis('off');
|
20 |
+
|
21 |
+
# return img
|
22 |
+
|
23 |
+
|
24 |
+
classes = ['apple pie', 'baby back ribs', 'baklava', 'beef carpaccio', 'beef tartare',
|
25 |
+
'beet salad', 'beignets', 'bibimbap', 'bread pudding', 'breakfast burrito',
|
26 |
+
'bruschetta', 'caesar_salad', 'cannoli', 'caprese salad', 'carrot cake',
|
27 |
+
'ceviche', 'cheese plate', 'cheesecake', 'chicken curry',
|
28 |
+
'chicken quesadilla', 'chicken wings', 'chocolate cake', 'chocolate mousse',
|
29 |
+
'churros', 'clam chowder', 'club sandwich', 'crab cakes', 'creme brulee',
|
30 |
+
'croque madame', 'cup cakes', 'deviled eggs', 'donuts', 'dumplings', 'edamame',
|
31 |
+
'eggs benedict', 'escargots', 'falafel', 'filet mignon', 'fish and chips',
|
32 |
+
'foie gras', 'french fries', 'french onion soup', 'french toast',
|
33 |
+
'fried calamari', 'fried rice', 'frozen yogurt', 'garlic bread', 'gnocchi',
|
34 |
+
'greek salad', 'grilled cheese sandwich', 'grilled salmon', 'guacamole',
|
35 |
+
'gyoza', 'hamburger', 'hot and sour soup', 'hot dog', 'huevos rancheros',
|
36 |
+
'hummus', 'ice cream', 'lasagna', 'lobster bisque', 'lobster roll sandwich',
|
37 |
+
'macaroni and cheese', 'macarons', 'miso soup', 'mussels', 'nachos',
|
38 |
+
'omelette', 'onion rings', 'oysters', 'pad thai', 'paella', 'pancakes',
|
39 |
+
'panna cotta', 'peking duck', 'pho', 'pizza', 'pork chop', 'poutine',
|
40 |
+
'prime rib', 'pulled pork sandwich', 'ramen', 'ravioli', 'red velvet cake',
|
41 |
+
'risotto', 'samosa', 'sashimi', 'scallops', 'seaweed salad',
|
42 |
+
'shrimp and grits', 'spaghetti bolognese', 'spaghetti carbonara',
|
43 |
+
'spring rolls', 'steak', 'strawberry_shortcake', 'sushi', 'tacos', 'takoyaki',
|
44 |
+
'tiramisu', 'tuna tartare', 'waffles']
|
45 |
+
|
46 |
+
def load_prepare_image(filepath, img_size, rescale=False):
|
47 |
+
img = tf.io.decode_image(filepath, channels=3)
|
48 |
+
img = tf.image.resize(img, img_size)
|
49 |
+
|
50 |
+
if rescale:
|
51 |
+
return img/255.
|
52 |
+
else:
|
53 |
+
return img
|
54 |
+
|
55 |
+
def model_pred(model_path, img, class_names=classes):
|
56 |
+
# Load TFLite model and allocate tensors.
|
57 |
+
interpreter = tf.lite.Interpreter(model_path=model_path)
|
58 |
+
#allocate the tensors
|
59 |
+
interpreter.allocate_tensors()
|
60 |
+
|
61 |
+
input_tensor= np.array(np.expand_dims(img,0), dtype=np.float32)
|
62 |
+
input_index = interpreter.get_input_details()[0]["index"]
|
63 |
+
|
64 |
+
# setting input tensor
|
65 |
+
interpreter.set_tensor(input_index, input_tensor)
|
66 |
+
|
67 |
+
#Run the inference
|
68 |
+
interpreter.invoke()
|
69 |
+
output_details = interpreter.get_output_details()
|
70 |
+
|
71 |
+
# output data of image
|
72 |
+
output_data = interpreter.get_tensor(output_details[0]['index'])
|
73 |
+
|
74 |
+
pred = output_data.argmax()
|
75 |
+
|
76 |
+
food_name = class_names[pred]
|
77 |
+
|
78 |
+
return food_name
|
79 |
+
|
80 |
+
def fetch_recipe(food_name):
|
81 |
+
url = "https://recipesapi2.p.rapidapi.com/recipes/"+food_name
|
82 |
+
querystring = {"maxRecipes":"1"}
|
83 |
+
|
84 |
+
headers = {
|
85 |
+
'x-rapidapi-host': "recipesapi2.p.rapidapi.com",
|
86 |
+
'x-rapidapi-key': "f6f6823b91msh9e92fed91d5356ap136f5djsn494d8f582fb3"
|
87 |
+
}
|
88 |
+
|
89 |
+
response = requests.request("GET", url, headers=headers, params=querystring)
|
90 |
+
json_data = json.loads(response.text)
|
91 |
+
|
92 |
+
recipe_data = json_data['data'][0]
|
93 |
+
|
94 |
+
return recipe_data
|