import streamlit as st import torch import torchaudio import os import numpy as np import base64 from audiocraft.models import MusicGen # Before batch_size = 64 # After batch_size = 32 torch.cuda.empty_cache() genres = ["Pop", "Rock", "Jazz", "Electronic", "Hip-Hop", "Classical", "Lofi", "Chillpop"] @st.cache_resource() def load_model(): model = MusicGen.get_pretrained('facebook/musicgen-small') return model def generate_music_tensors(description, duration: int): model = load_model() model.set_generation_params( use_sampling=True, top_k=250, duration=duration ) with st.spinner("Generating Music..."): output = model.generate( descriptions=description, progress=True, return_tokens=True ) st.success("Music Generation Complete!") return output def save_audio(samples: torch.Tensor): sample_rate = 30000 save_path = "audio_output" assert samples.dim() == 2 or samples.dim() == 3 samples = samples.detach().cpu() if samples.dim() == 2: samples = samples[None, ...] for idx, audio in enumerate(samples): audio_path = os.path.join(save_path, f"audio_{idx}.wav") torchaudio.save(audio_path, audio, sample_rate) return audio_path def get_binary_file_downloader_html(bin_file, file_label='File'): with open(bin_file, 'rb') as f: data = f.read() bin_str = base64.b64encode(data).decode() href = f'Download {file_label}' return href st.set_page_config( page_icon= "musical_note", page_title= "Music Gen" ) def main(): st.title("🎧 AI Composer Small-Model 🎧") st.subheader("Craft your perfect melody!") bpm = st.number_input("Enter Speed in BPM", min_value=60) text_area = st.text_area('Ex : 80s rock song with guitar and drums') st.text('') # Dropdown for genres selected_genre = st.selectbox("Select Genre", genres) st.subheader("2. Select time duration (In Seconds)") time_slider = st.slider("Select time duration (In Seconds)", 0, 30, 10) if st.button('Let\'s Generate 🎶'): st.text('\n\n') st.subheader("Generated Music") description = f"{text_area} {selected_genre} {bpm} BPM" # Clear CUDA memory cache before generating music torch.cuda.empty_cache() music_tensors = generate_music_tensors(description, time_slider) # Only play the full audio for index 0 idx = 0 music_tensor = music_tensors[idx] audio_filepath = save_audio(music_tensor) audio_file = open(audio_filepath, 'rb') audio_bytes = audio_file.read() # Play the full audio st.audio(audio_bytes, format='audio/wav') st.markdown(get_binary_file_downloader_html(audio_filepath, f'Audio_{idx}'), unsafe_allow_html=True) if __name__ == "__main__": main()