File size: 7,703 Bytes
e027770
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import datetime
import json
import os
import shutil
import tempfile
import uuid
from pathlib import Path
from typing import Any, Dict, List

import gradio as gr
import pyarrow as pa
import pyarrow.parquet as pq
from gradio_client import Client
from huggingface_hub import CommitScheduler

#######################
# Parquet scheduler   #
# Run in scheduler.py #
#######################


class ParquetScheduler(CommitScheduler):
    def append(self, row: Dict[str, Any]) -> None:
        with self.lock:
            if not hasattr(self, "rows") or self.rows is None:
                self.rows = []
            self.rows.append(row)

    def set_schema(self, schema: Dict[str, Dict[str, str]]) -> None:
        """
        Define a schema to help `datasets` load the generated library.

        This method is optional and can be called once just after the scheduler had been created. If it is not called,
        the schema is automatically inferred before pushing the data to the Hub.

        See https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Value for the list of
        possible values.

        Example:
        ```py
        scheduler.set_schema({
            "prompt": {"_type": "Value", "dtype": "string"},
            "negative_prompt": {"_type": "Value", "dtype": "string"},
            "guidance_scale": {"_type": "Value", "dtype": "int64"},
            "image": {"_type": "Image"},
        })
        ```
        """
        self._schema = schema

    def push_to_hub(self):
        # Check for new rows to push
        with self.lock:
            rows = getattr(self, "rows", None)
            self.rows = None
        if not rows:
            return
        print(f"Got {len(rows)} item(s) to commit.")

        # Load images + create 'features' config for datasets library
        hf_features: Dict[str, Dict] = getattr(self, "_schema", None) or {}
        path_to_cleanup: List[Path] = []
        for row in rows:
            for key, value in row.items():
                # Infer schema (for `datasets` library)
                if key not in hf_features:
                    hf_features[key] = _infer_schema(key, value)

                # Load binary files if necessary
                if hf_features[key]["_type"] in ("Image", "Audio"):
                    # It's an image or audio: we load the bytes and remember to cleanup the file
                    file_path = Path(value)
                    if file_path.is_file():
                        row[key] = {
                            "path": file_path.name,
                            "bytes": file_path.read_bytes(),
                        }
                        path_to_cleanup.append(file_path)

        # Complete rows if needed
        for row in rows:
            for feature in hf_features:
                if feature not in row:
                    row[feature] = None

        # Export items to Arrow format
        table = pa.Table.from_pylist(rows)

        # Add metadata (used by datasets library)
        table = table.replace_schema_metadata(
            {"huggingface": json.dumps({"info": {"features": hf_features}})}
        )

        # Write to parquet file
        archive_file = tempfile.NamedTemporaryFile()
        pq.write_table(table, archive_file.name)

        # Upload
        self.api.upload_file(
            repo_id=self.repo_id,
            repo_type=self.repo_type,
            revision=self.revision,
            path_in_repo=f"{uuid.uuid4()}.parquet",
            path_or_fileobj=archive_file.name,
        )
        print(f"Commit completed.")

        # Cleanup
        archive_file.close()
        for path in path_to_cleanup:
            path.unlink(missing_ok=True)


def _infer_schema(key: str, value: Any) -> Dict[str, str]:
    """
    Infer schema for the `datasets` library.

    See https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Value.
    """
    if "image" in key:
        return {"_type": "Image"}
    if "audio" in key:
        return {"_type": "Audio"}
    if isinstance(value, int):
        return {"_type": "Value", "dtype": "int64"}
    if isinstance(value, float):
        return {"_type": "Value", "dtype": "float64"}
    if isinstance(value, bool):
        return {"_type": "Value", "dtype": "bool"}
    if isinstance(value, bytes):
        return {"_type": "Value", "dtype": "binary"}
    # Otherwise in last resort => convert it to a string
    return {"_type": "Value", "dtype": "string"}


#################
# Gradio app    #
# Run in app.py #
#################

PARQUET_DATASET_DIR = Path("parquet_dataset")
PARQUET_DATASET_DIR.mkdir(parents=True, exist_ok=True)

scheduler = ParquetScheduler(
    repo_id="example-space-to-dataset-parquet",
    repo_type="dataset",
    folder_path=PARQUET_DATASET_DIR,
    path_in_repo="data",
)

client = Client("stabilityai/stable-diffusion")


def generate(prompt: str) -> tuple[str, list[str]]:
    """Generate images on 'submit' button."""
    # Generate from https://huggingface.co/spaces/stabilityai/stable-diffusion
    out_dir = client.predict(prompt, "", 9, fn_index=1)
    with (Path(out_dir) / "captions.json").open() as f:
        paths = list(json.load(f).keys())

    # Save config used to generate data
    with tempfile.NamedTemporaryFile(
        mode="w", suffix=".json", delete=False
    ) as config_file:
        json.dump(
            {"prompt": prompt, "negative_prompt": "", "guidance_scale": 9}, config_file
        )

    return config_file.name, paths


def get_selected_index(evt: gr.SelectData) -> int:
    """Select "best" image."""
    return evt.index


def save_preference(
    config_path: str, gallery: list[dict[str, Any]], selected_index: int
) -> None:
    """Save preference, i.e. move images to a new folder and send paths+config to scheduler."""
    save_dir = PARQUET_DATASET_DIR / f"{uuid.uuid4()}"
    save_dir.mkdir(parents=True, exist_ok=True)

    # Load config
    with open(config_path) as f:
        data = json.load(f)

    # Add selected item + timestamp
    data["selected_index"] = selected_index
    data["timestamp"] = datetime.datetime.utcnow().isoformat()

    # Copy and add images
    for index, path in enumerate(x["name"] for x in gallery):
        name = f"{index:03d}"
        dst_path = save_dir / f"{name}{Path(path).suffix}"
        shutil.move(path, dst_path)
        data[f"image_{name}"] = dst_path

    # Send to scheduler
    scheduler.append(data)


def clear() -> tuple[dict, dict, dict]:
    """Clear all values once saved."""
    return (gr.update(value=None), gr.update(value=None), gr.update(interactive=False))


def get_demo():
    with gr.Group():
        prompt = gr.Text(show_label=False, placeholder="Prompt")
        config_path = gr.Text(visible=False)
        gallery = gr.Gallery(show_label=False).style(
            columns=2, rows=2, height="600px", object_fit="scale-down"
        )
        selected_index = gr.Number(visible=False, precision=0)
    save_preference_button = gr.Button("Save preference", interactive=False)

    # Generate images on submit
    prompt.submit(fn=generate, inputs=prompt, outputs=[config_path, gallery],).success(
        fn=lambda: gr.update(interactive=True),
        outputs=save_preference_button,
        queue=False,
    )

    # Save preference on click
    gallery.select(
        fn=get_selected_index,
        outputs=selected_index,
        queue=False,
    )
    save_preference_button.click(
        fn=save_preference,
        inputs=[config_path, gallery, selected_index],
        queue=False,
    ).then(
        fn=clear,
        outputs=[config_path, gallery, save_preference_button],
        queue=False,
    )