space_to_dataset_saver / app_image.py
Wauplin's picture
Wauplin HF staff
Upload 4 files
3531f81
raw
history blame
1.45 kB
import json
from datetime import datetime
from pathlib import Path
from uuid import uuid4
import gradio as gr
import numpy as np
from PIL import Image
from huggingface_hub import CommitScheduler, InferenceClient
IMAGE_DATASET_DIR = Path("image_dataset") / f"train-{uuid4()}"
IMAGE_DATASET_DIR.mkdir(parents=True, exist_ok=True)
IMAGE_JSONL_PATH = IMAGE_DATASET_DIR / "metadata.jsonl"
scheduler = CommitScheduler(
repo_id="example-commit-scheduler-image",
repo_type="dataset",
folder_path=IMAGE_DATASET_DIR,
path_in_repo=IMAGE_DATASET_DIR.name,
)
client = InferenceClient()
def generate_image(prompt: str) -> Image:
return client.text_to_image(prompt)
def save_image(prompt: str, image_array: np.ndarray) -> None:
image_path = IMAGE_DATASET_DIR / f"{uuid4()}.png"
with scheduler.lock:
Image.fromarray(image_array).save(image_path)
with IMAGE_JSONL_PATH.open("a") as f:
json.dump({"prompt": prompt, "file_name": image_path.name, "datetime": datetime.now().isoformat()}, f)
f.write("\n")
def get_demo():
with gr.Row():
prompt_value = gr.Textbox(label="Prompt")
image_value = gr.Image(label="Generated image")
text_to_image_btn = gr.Button("Generate")
text_to_image_btn.click(fn=generate_image, inputs=prompt_value, outputs=image_value).success(
fn=save_image,
inputs=[prompt_value, image_value],
outputs=None,
)