File size: 1,335 Bytes
bc7d5f7
 
 
 
d750b15
bc7d5f7
 
 
 
2ef732c
bc7d5f7
 
2b376b4
 
bc7d5f7
2b376b4
bc7d5f7
 
 
 
 
 
 
 
 
 
 
 
 
2b376b4
bc7d5f7
2b376b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import gradio as gr
import numpy as np
from PIL import Image
import requests
import os

import hopsworks
import joblib

project = hopsworks.login(project="test42",api_key_value=os.environ.get("HOPSWORKS_API_KEYS"))
fs = project.get_feature_store()
dataset_api = project.get_dataset_api()
dataset_api.download("Resources/aqi_results.csv")
aqi = pd.read_csv('aqi_results.csv')

'''
def update():
    dataset_api.download("Resources/aqi_results.csv")
    aqi = pd.read_csv('aqi_results.csv')
    return aqi

with gr.Blocks() as demo:
    gr.Markdown("Air Quality Index Prediction")
    with gr.Row():
      with gr.Column():
          gr.Label("Predicted AQI in next 7 days in Singapore")
          out = gr.Dataframe()
    btn = gr.Button("Refresh")
    btn.click(fn=update, inputs=None, outputs=out)
'''


import plotly.express as px
import pandas as pd

def plotly_plot():
    # prepare some data
    dataset_api.download("Resources/aqi_results.csv")
    aqi = pd.read_csv('aqi_results.csv')
    
    x = list(aqi['datetime'])
    y = list(aqi['aqi'])
    
    data = pd.DataFrame()
    data['Datetime'] = x
    data['AQI'] = y
    # create a new plot
    p = px.bar(data, x='Datetime', y='AQI')

    return p

# show the results
outputs = gr.Plot()

demo1 = gr.Interface(fn=plotly_plot, inputs=None, outputs=outputs)


demo1.launch()