File size: 7,419 Bytes
97132db
 
 
af5935b
 
567a60e
099f191
af5935b
 
73884d7
 
 
e634f6b
73884d7
 
af5935b
97132db
 
 
 
11d890f
97132db
 
 
 
 
 
 
 
 
c676e89
 
 
1acf205
37ffd75
1acf205
d2b54c3
 
 
 
 
 
 
97132db
 
d2b54c3
af5935b
97132db
 
7b2cad7
97132db
 
 
af5935b
97132db
 
d2b54c3
97132db
 
af5935b
97132db
 
d2b54c3
97132db
 
 
f8f385d
 
d2b54c3
 
97132db
d2b54c3
97132db
af5935b
824f4e9
97132db
2ed1d5c
97132db
d2b54c3
2ed1d5c
 
 
 
 
 
 
 
 
 
 
 
 
 
ab691f9
2ed1d5c
6c1d851
2ed1d5c
 
 
 
 
 
 
 
 
 
 
 
97132db
 
824f4e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97132db
824f4e9
 
 
97132db
824f4e9
 
e9368dc
824f4e9
 
 
 
 
 
97132db
 
 
 
d2b54c3
 
af5935b
 
97132db
 
 
af5935b
97132db
 
 
af5935b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# libraries
from flask import Flask, render_template, request, redirect, url_for, flash, session, send_from_directory
import os
import logging
from utility.utils import extract_text_from_images, Data_Extractor, json_to_llm_str, process_extracted_text, process_resume_data
from backup.backup import NER_Model
from paddleocr import PaddleOCR

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    handlers=[
        logging.StreamHandler()  # Remove FileHandler and log only to the console
    ]
)

# Flask App
app = Flask(__name__)
app.secret_key = 'your_secret_key'
app.config['UPLOAD_FOLDER'] = 'uploads/'
app.config['RESULT_FOLDER'] = 'results/'

UPLOAD_FOLDER = 'static/uploads/'
RESULT_FOLDER = 'static/results/'
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
os.makedirs(RESULT_FOLDER, exist_ok=True)

if not os.path.exists(app.config['UPLOAD_FOLDER']):
    os.makedirs(app.config['UPLOAD_FOLDER'])

if not os.path.exists(app.config['RESULT_FOLDER']):
    os.makedirs(app.config['RESULT_FOLDER'])

# Set the PaddleOCR home directory to a writable location
os.environ['PADDLEOCR_HOME'] = '/tmp/.paddleocr' 

# Check if PaddleOCR home directory is writable
if not os.path.exists('/tmp/.paddleocr'):
    os.makedirs('/tmp/.paddleocr', exist_ok=True)
    logging.info("Created PaddleOCR home directory.")
else:
    logging.info("PaddleOCR home directory exists.")

@app.route('/')
def index():
    uploaded_files = session.get('uploaded_files', [])
    logging.info(f"Accessed index page, uploaded files: {uploaded_files}")
    return render_template('index.html', uploaded_files=uploaded_files)

@app.route('/upload', methods=['GET','POST'])
def upload_file():
    if 'files' not in request.files:
        flash('No file part')
        logging.warning("No file part found in the request")
        return redirect(request.url)

    files = request.files.getlist('files')  
    if not files or all(file.filename == '' for file in files):
        flash('No selected files')
        logging.warning("No files selected for upload")
        return redirect(request.url)

    uploaded_files = session.get('uploaded_files', [])
    for file in files:
        if file:
            filename = file.filename
            file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
            file.save(file_path)
            uploaded_files.append(filename)
            logging.info(f"Uploaded file: {filename} at {file_path}")

    session['uploaded_files'] = uploaded_files  
    flash('Files successfully uploaded')
    logging.info(f"Files successfully uploaded: {uploaded_files}")
    return process_file(uploaded_files)

@app.route('/remove_file',methods=['POST'])
def remove_file():
    uploaded_files = session.get('uploaded_files', [])
    if uploaded_file:
        for filename in uploaded_files:
            file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
            if os.path.exists(file_path):
                os.remove(file_path)
                logging.info(f"Removed file: {filename}")
            else:
                logging.warning(f"File not found for removal: {file_path}")  # More specific log

        session.pop('uploaded_files', None)  
        flash('Files successfully removed')
        logging.info("All uploaded files removed")
    else:
        flash('No file to remove.')
        logging.warning("File not found for removal") 
    return redirect(url_for('index'))

@app.route('/reset_upload')
def reset_upload():
    """Reset the uploaded file and the processed data."""
    uploaded_file = session.get('uploaded_file', [])
    if uploaded_file:
        for filename in uploaded_file:
            os.remove(os.path.join(app.config['UPLOAD_FOLDER'], filename))
            logging.info(f"Removed file: {filename}")
        session.pop('uploaded_files', None)
        flash('Files successfully removed')
    else:
        flash('No file to remove.')    
    return redirect(url_for('index'))

@app.route('/process_file/<filename>', methods=['GET', 'POST'])
def process_file(filename):
    try:
        uploaded_files = session.get('uploaded_files', [])
        if not uploaded_files:
            print('No files selected for processing')
            logging.warning("No files selected for processing")
            return redirect(url_for('index'))

        # Joining the base and the requested path
        file_paths = [os.path.join(app.config['UPLOAD_FOLDER'], filename) for filename in uploaded_files]
        logging.info(f"Processing files: {file_paths}")

        extracted_text = {}
        processed_Img = {}

        # Try to process using the main model (Mistral 7b)
        try:
            extracted_text, processed_Img = extract_text_from_images(file_paths)
            logging.info(f"Extracted text: {extracted_text}")
            logging.info(f"Processed images: {processed_Img}")

            #run the model code only if the text is extracted.
            if extracted_text:
                llmText = json_to_llm_str(extracted_text)
                logging.info(f"LLM text: {llmText}")

                #run the model code only if the text is extracted.
                LLMdata = Data_Extractor(llmText)
                print("Json Output from model------------>",LLMdata)
                logging.info(f"LLM data: {LLMdata}")
            else:
                raise ('The text is not detected in the OCR')

        except Exception as model_error:
            logging.error(f"Error during LLM processing: {model_error}")
            logging.info("Running backup model...")

            # Use backup model in case of errors
            LLMdata = {}
            extracted_text, processed_Img = extract_text_from_images(file_paths)
            logging.info(f"Extracted text (Backup): {extracted_text}")
            logging.info(f"Processed images (Backup): {processed_Img}")
            
            if extracted_text:
                text = json_to_llm_str(extracted_text)
                LLMdata = NER_Model(text)
                print("Json Output from model------------>",LLMdata)
                logging.info(f"NER model data: {LLMdata}")
            else:
                logging.warning("No extracted text available for backup model")

        # Process extracted text and structure the output
        cont_data = process_extracted_text(extracted_text)
        logging.info(f"Contextual data: {cont_data}")

        processed_data = process_resume_data(LLMdata, cont_data, extracted_text)
        logging.info(f"Processed data: {processed_data}")

        # Save data in session for later use
        session['processed_data'] = processed_data
        session['processed_Img'] = processed_Img

        print('Data processed and analyzed successfully')
        logging.info("Data processed and analyzed successfully")
    return redirect(url_for('result'))

@app.route('/result')
def result():
    processed_data = session.get('processed_data', {})
    processed_Img = session.get('processed_Img', {})
    logging.info(f"Displaying results: Data - {processed_data}, Images - {processed_Img}")
    return render_template('result.html', data=processed_data, Img=processed_Img)

@app.route('/uploads/<filename>')
def uploaded_file(filename):
    logging.info(f"Serving file: {filename}")
    return send_from_directory(app.config['UPLOAD_FOLDER'], filename)

if __name__ == '__main__':
    logging.info("Starting Flask app")
    app.run(debug=True)