File size: 5,186 Bytes
fcd0a70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from collections import defaultdict
from typing import List, Tuple, Dict

import torch
from torch import nn
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader
import random


class InstructBase(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.max_width = config.max_width
        self.base_config = config

    def get_dict(self, spans, classes_to_id):
        dict_tag = defaultdict(int)
        for span in spans:
            if span[2] in classes_to_id:
                dict_tag[(span[0], span[1])] = classes_to_id[span[2]]
        return dict_tag

    def preprocess_spans(self, tokens, ner, classes_to_id):

        max_len = self.base_config.max_len

        if len(tokens) > max_len:
            length = max_len
            tokens = tokens[:max_len]
        else:
            length = len(tokens)

        spans_idx = []
        for i in range(length):
            spans_idx.extend([(i, i + j) for j in range(self.max_width)])

        dict_lab = self.get_dict(ner, classes_to_id) if ner else defaultdict(int)

        # 0 for null labels
        span_label = torch.LongTensor([dict_lab[i] for i in spans_idx])
        spans_idx = torch.LongTensor(spans_idx)

        # mask for valid spans
        valid_span_mask = spans_idx[:, 1] > length - 1

        # mask invalid positions
        span_label = span_label.masked_fill(valid_span_mask, -1)

        return {
            'tokens': tokens,
            'span_idx': spans_idx,
            'span_label': span_label,
            'seq_length': length,
            'entities': ner,
        }

    def collate_fn(self, batch_list, entity_types=None):
        # batch_list: list of dict containing tokens, ner
        if entity_types is None:
            negs = self.get_negatives(batch_list, 100)
            class_to_ids = []
            id_to_classes = []
            for b in batch_list:
                # negs = b["negative"]
                random.shuffle(negs)

                # negs = negs[:sampled_neg]
                max_neg_type_ratio = int(self.base_config.max_neg_type_ratio)

                if max_neg_type_ratio == 0:
                    # no negatives
                    neg_type_ratio = 0
                else:
                    neg_type_ratio = random.randint(0, max_neg_type_ratio)

                if neg_type_ratio == 0:
                    # no negatives
                    negs_i = []
                else:
                    negs_i = negs[:len(b['ner']) * neg_type_ratio]

                # this is the list of all possible entity types (positive and negative)
                types = list(set([el[-1] for el in b['ner']] + negs_i))

                # shuffle (every epoch)
                random.shuffle(types)

                if len(types) != 0:
                    # prob of higher number shoul
                    # random drop
                    if self.base_config.random_drop:
                        num_ents = random.randint(1, len(types))
                        types = types[:num_ents]

                # maximum number of entities types
                types = types[:int(self.base_config.max_types)]

                # supervised training
                if "label" in b:
                    types = sorted(b["label"])

                class_to_id = {k: v for v, k in enumerate(types, start=1)}
                id_to_class = {k: v for v, k in class_to_id.items()}
                class_to_ids.append(class_to_id)
                id_to_classes.append(id_to_class)

            batch = [
                self.preprocess_spans(b["tokenized_text"], b["ner"], class_to_ids[i]) for i, b in enumerate(batch_list)
            ]

        else:
            class_to_ids = {k: v for v, k in enumerate(entity_types, start=1)}
            id_to_classes = {k: v for v, k in class_to_ids.items()}
            batch = [
                self.preprocess_spans(b["tokenized_text"], b["ner"], class_to_ids) for b in batch_list
            ]

        span_idx = pad_sequence(
            [b['span_idx'] for b in batch], batch_first=True, padding_value=0
        )

        span_label = pad_sequence(
            [el['span_label'] for el in batch], batch_first=True, padding_value=-1
        )

        return {
            'seq_length': torch.LongTensor([el['seq_length'] for el in batch]),
            'span_idx': span_idx,
            'tokens': [el['tokens'] for el in batch],
            'span_mask': span_label != -1,
            'span_label': span_label,
            'entities': [el['entities'] for el in batch],
            'classes_to_id': class_to_ids,
            'id_to_classes': id_to_classes,
        }

    @staticmethod
    def get_negatives(batch_list, sampled_neg=5):
        ent_types = []
        for b in batch_list:
            types = set([el[-1] for el in b['ner']])
            ent_types.extend(list(types))
        ent_types = list(set(ent_types))
        # sample negatives
        random.shuffle(ent_types)
        return ent_types[:sampled_neg]

    def create_dataloader(self, data, entity_types=None, **kwargs):
        return DataLoader(data, collate_fn=lambda x: self.collate_fn(x, entity_types), **kwargs)