Spaces:
Sleeping
Sleeping
File size: 23,020 Bytes
d8b7b87 06bd6d6 d8b7b87 4aaae54 4dbb811 15e03b2 4dbb811 d8b7b87 667243e 26e0db5 3bc2e7c 409d3df 26e0db5 667243e d8b7b87 3bc2e7c bd55508 3bc2e7c bd55508 d994215 d8b7b87 d994215 d8b7b87 d994215 d8b7b87 d994215 d8b7b87 d994215 d8b7b87 d994215 d8b7b87 8bd631d f1e58f7 8bd631d 84d7e55 308366d 4e653b1 308366d 00b64c9 f1e58f7 ecfb74f f1e58f7 84d7e55 ecfb74f 8bd631d ecfb74f 9994261 ecfb74f 9994261 ecfb74f 9994261 ecfb74f 84d7e55 ecfb74f 84d7e55 8bd631d ecfb74f 84d7e55 ecfb74f d994215 26e0db5 d8b7b87 d994215 d8b7b87 d994215 8bd631d 84d7e55 8bd631d d994215 84d7e55 d994215 15e03b2 8bd631d 15e03b2 b1e3b03 d994215 8bd631d d994215 6fac153 d8b7b87 6fac153 d101fa8 d8b7b87 d101fa8 de57c44 d101fa8 de57c44 bae46d8 d8b7b87 3a5bd72 d8b7b87 3bc2e7c d8b7b87 3bc2e7c d8b7b87 3bc2e7c d8b7b87 8bd631d d8b7b87 8bd631d d8b7b87 8bd631d d8b7b87 8bd631d d8b7b87 6fac153 d8b7b87 cf24fe3 8dba865 cf24fe3 d8b7b87 3c5c7f9 8dba865 3c5c7f9 8dba865 3c5c7f9 8dba865 3c5c7f9 cf24fe3 3c5c7f9 8dba865 3c5c7f9 d8b7b87 3bc2e7c d8b7b87 3bc2e7c b6eccd9 42a82b0 c1723fc b6eccd9 3bc2e7c c1723fc b6eccd9 3c5c7f9 696b013 c1723fc 696b013 3bc2e7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
# libraries
import os
from huggingface_hub import InferenceClient
from dotenv import load_dotenv
import json
import re
#import easyocr
from PIL import Image, ImageEnhance, ImageDraw
import cv2
import numpy as np
from paddleocr import PaddleOCR
import logging
from datetime import datetime
# Configure logging
logging.basicConfig(
level=logging.INFO,
handlers=[
logging.StreamHandler() # Remove FileHandler and log only to the console
]
)
# Set the PaddleOCR home directory to a writable location
os.environ['PADDLEOCR_HOME'] = '/tmp/.paddleocr'
RESULT_FOLDER = 'static/results/'
JSON_FOLDER = 'static/json/'
if not os.path.exists('/tmp/.paddleocr'):
os.makedirs(RESULT_FOLDER, exist_ok=True)
# Check if PaddleOCR home directory is writable
if not os.path.exists('/tmp/.paddleocr'):
os.makedirs('/tmp/.paddleocr', exist_ok=True)
logging.info("Created PaddleOCR home directory.")
else:
logging.info("PaddleOCR home directory exists.")
# Load environment variables from .env file
load_dotenv()
# Authenticate with Hugging Face
HFT = os.getenv('HF_TOKEN')
# Initialize the InferenceClient
client = InferenceClient(model="mistralai/Mistral-7B-Instruct-v0.3", token=HFT)
def load_image(image_path):
ext = os.path.splitext(image_path)[1].lower()
if ext in ['.png', '.jpg', '.jpeg', '.webp', '.tiff']:
image = cv2.imread(image_path)
if image is None:
raise ValueError(f"Failed to load image from {image_path}. The file may be corrupted or unreadable.")
return image
else:
raise ValueError(f"Unsupported image format: {ext}")
# Function for upscaling image using OpenCV's INTER_CUBIC
def upscale_image(image, scale=2):
height, width = image.shape[:2]
upscaled_image = cv2.resize(image, (width * scale, height * scale), interpolation=cv2.INTER_CUBIC)
return upscaled_image
# Function to denoise the image (reduce noise)
def reduce_noise(image):
return cv2.fastNlMeansDenoisingColored(image, None, 10, 10, 7, 21)
# Function to sharpen the image
def sharpen_image(image):
kernel = np.array([[0, -1, 0],
[-1, 5, -1],
[0, -1, 0]])
sharpened_image = cv2.filter2D(image, -1, kernel)
return sharpened_image
# Function to increase contrast and enhance details without changing color
def enhance_image(image):
pil_img = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
enhancer = ImageEnhance.Contrast(pil_img)
enhanced_image = enhancer.enhance(1.5)
enhanced_image_bgr = cv2.cvtColor(np.array(enhanced_image), cv2.COLOR_RGB2BGR)
return enhanced_image_bgr
# Complete function to process image
def process_image(image_path, scale=2):
# Load the image
image = load_image(image_path)
# Upscale the image
upscaled_image = upscale_image(image, scale)
# Reduce noise
denoised_image = reduce_noise(upscaled_image)
# Sharpen the image
sharpened_image = sharpen_image(denoised_image)
# Enhance the image contrast and details without changing color
final_image = enhance_image(sharpened_image)
return final_image
# Function for OCR with PaddleOCR, returning both text and bounding boxes
def ocr_with_paddle(img):
final_text = ''
boxes = []
# Initialize PaddleOCR
ocr = PaddleOCR(
lang='en',
use_angle_cls=True,
det_model_dir=os.path.join(os.environ['PADDLEOCR_HOME'], 'whl/det'),
rec_model_dir=os.path.join(os.environ['PADDLEOCR_HOME'], 'whl/rec/en/en_PP-OCRv4_rec_infer'),
cls_model_dir=os.path.join(os.environ['PADDLEOCR_HOME'], 'whl/cls/ch_ppocr_mobile_v2.0_cls_infer')
)
# Check if img is a file path or an image array
if isinstance(img, str):
img = cv2.imread(img)
# Perform OCR
result = ocr.ocr(img)
# Iterate through the OCR result
for line in result[0]:
# Check how many values are returned (2 or 3) and unpack accordingly
if len(line) == 3:
box, (text, confidence), _ = line # When 3 values are returned
elif len(line) == 2:
box, (text, confidence) = line # When only 2 values are returned
# Store the recognized text and bounding boxes
final_text += ' ' + text # Extract the text from the tuple
boxes.append(box)
# Draw the bounding box
points = [(int(point[0]), int(point[1])) for point in box]
cv2.polylines(img, [np.array(points)], isClosed=True, color=(0, 255, 0), thickness=2)
# Store the image with bounding boxes in a variable
img_with_boxes = img
return final_text, img_with_boxes
def extract_text_from_images(image_paths):
all_extracted_texts = {}
all_extracted_imgs = {}
for image_path in image_paths:
try:
# Enhance the image before OCR
enhanced_image = process_image(image_path, scale=2)
# Perform OCR on the enhanced image and get boxes
result, img_with_boxes = ocr_with_paddle(enhanced_image)
# Draw bounding boxes on the processed image
img_result = Image.fromarray(enhanced_image)
#img_with_boxes = draw_boxes(img_result, boxes)
# genrating unique id to save the images
# Get the current date and time
current_time = datetime.now()
# Format it as a string to create a unique ID
unique_id = current_time.strftime("%Y%m%d%H%M%S%f")
#print(unique_id)
# Save the image with boxes
result_image_path = os.path.join(RESULT_FOLDER, f'result_{unique_id}_{os.path.basename(image_path)}')
#img_with_boxes.save(result_image_path)
cv2.imwrite(result_image_path, img_with_boxes)
# Store the text and image result paths
all_extracted_texts[image_path] = result
all_extracted_imgs[image_path] = result_image_path
except ValueError as ve:
print(f"Error processing image {image_path}: {ve}")
continue # Continue to the next image if there's an error
# Convert to JSON-compatible structure
all_extracted_imgs_json = {str(k): str(v) for k, v in all_extracted_imgs.items()}
return all_extracted_texts, all_extracted_imgs_json
# Function to call the Gemma model and process the output as Json
def Data_Extractor(data, client=client):
text = f'''Act as a Text extractor for the following text given in text: {data}
extract text in the following output JSON string:
{{
"Name": ["Identify and Extract All the person's name from the text."],
"Designation": ["Extract All the designation or job title mentioned in the text."],
"Company": ["Extract All the company or organization name if mentioned."],
"Contact": ["Extract All phone number, including country codes if present."],
"Address": ["Extract All the full postal address or location mentioned in the text."],
"Email": ["Identify and Extract All valid email addresses mentioned in the text else 'Not found'."],
"Link": ["Identify and Extract any website URLs or social media links present in the text."]
}}
Output:
'''
# Call the API for inference
response = client.text_generation(text, max_new_tokens=1000)#, temperature=0.4, top_k=50, top_p=0.9, repetition_penalty=1.2)
print("parse in text ---:",response)
# Convert the response text to JSON
try:
json_data = json.loads(response)
print("Json_data-------------->",json_data)
return json_data
except json.JSONDecodeError as e:
return {"error": f"Error decoding JSON: {e}"}
# For have text compatible to the llm
def json_to_llm_str(textJson):
str=''
for file,item in textJson.items():
str+=item + ' '
return str
# Define the RE for extracting the contact details like number, mail , portfolio, website etc
def extract_contact_details(text):
# Regex patterns
# Phone numbers with at least 5 digits in any segment
combined_phone_regex = re.compile(r'''
(?:
#(?:(?:\+91[-.\s]?)?\d{5}[-.\s]?\d{5})|(?:\+?\d{1,3})?[-.\s()]?\d{5,}[-.\s()]?\d{5,}[-.\s()]?\d{1,9} | /^[\.-)( ]*([0-9]{3})[\.-)( ]*([0-9]{3})[\.-)( ]*([0-9]{4})$/ |
\+1\s\(\d{3}\)\s\d{3}-\d{4} | # USA/Canada Intl +1 (XXX) XXX-XXXX
\(\d{3}\)\s\d{3}-\d{4} | # USA/Canada STD (XXX) XXX-XXXX
\(\d{3}\)\s\d{3}\s\d{4} | # USA/Canada (XXX) XXX XXXX
\(\d{3}\)\s\d{3}\s\d{3} | # USA/Canada (XXX) XXX XXX
\+1\d{10} | # +1 XXXXXXXXXX
\d{10} | # XXXXXXXXXX
\+44\s\d{4}\s\d{6} | # UK Intl +44 XXXX XXXXXX
\+44\s\d{3}\s\d{3}\s\d{4} | # UK Intl +44 XXX XXX XXXX
0\d{4}\s\d{6} | # UK STD 0XXXX XXXXXX
0\d{3}\s\d{3}\s\d{4} | # UK STD 0XXX XXX XXXX
\+44\d{10} | # +44 XXXXXXXXXX
0\d{10} | # 0XXXXXXXXXX
\+61\s\d\s\d{4}\s\d{4} | # Australia Intl +61 X XXXX XXXX
0\d\s\d{4}\s\d{4} | # Australia STD 0X XXXX XXXX
\+61\d{9} | # +61 XXXXXXXXX
0\d{9} | # 0XXXXXXXXX
\+91\s\d{5}-\d{5} | # India Intl +91 XXXXX-XXXXX
\+91\s\d{4}-\d{6} | # India Intl +91 XXXX-XXXXXX
\+91\s\d{10} | # India Intl +91 XXXXXXXXXX
\+91\s\d{3}\s\d{3}\s\d{4} | # India Intl +91 XXX XXX XXXX
\+91\s\d{3}-\d{3}-\d{4} | # India Intl +91 XXX-XXX-XXXX
\+91\s\d{2}\s\d{4}\s\d{4} | # India Intl +91 XX XXXX XXXX
\+91\s\d{2}-\d{4}-\d{4} | # India Intl +91 XX-XXXX-XXXX
\+91\s\d{5}\s\d{5} | # India Intl +91 XXXXX XXXXX
\d{5}\s\d{5} | # India XXXXX XXXXX
\d{5}-\d{5} | # India XXXXX-XXXXX
0\d{2}-\d{7} | # India STD 0XX-XXXXXXX
\+91\d{10} | # +91 XXXXXXXXXX
\d{10} | # XXXXXXXXXX # Here is the regex to handle all possible combination of the contact
\d{6}-\d{4} | # XXXXXX-XXXX
\d{4}-\d{6} | # XXXX-XXXXXX
\d{3}\s\d{3}\s\d{4} | # XXX XXX XXXX
\d{3}-\d{3}-\d{4} | # XXX-XXX-XXXX
\d{4}\s\d{3}\s\d{3} | # XXXX XXX XXX
\d{4}-\d{3}-\d{3} | # XXXX-XXX-XXX #-----
\+49\s\d{4}\s\d{8} | # Germany Intl +49 XXXX XXXXXXXX
\+49\s\d{3}\s\d{7} | # Germany Intl +49 XXX XXXXXXX
0\d{3}\s\d{8} | # Germany STD 0XXX XXXXXXXX
\+49\d{12} | # +49 XXXXXXXXXXXX
\+49\d{10} | # +49 XXXXXXXXXX
0\d{11} | # 0XXXXXXXXXXX
\+86\s\d{3}\s\d{4}\s\d{4} | # China Intl +86 XXX XXXX XXXX
0\d{3}\s\d{4}\s\d{4} | # China STD 0XXX XXXX XXXX
\+86\d{11} | # +86 XXXXXXXXXXX
\+81\s\d\s\d{4}\s\d{4} | # Japan Intl +81 X XXXX XXXX
\+81\s\d{2}\s\d{4}\s\d{4} | # Japan Intl +81 XX XXXX XXXX
0\d\s\d{4}\s\d{4} | # Japan STD 0X XXXX XXXX
\+81\d{10} | # +81 XXXXXXXXXX
\+81\d{9} | # +81 XXXXXXXXX
0\d{9} | # 0XXXXXXXXX
\+55\s\d{2}\s\d{5}-\d{4} | # Brazil Intl +55 XX XXXXX-XXXX
\+55\s\d{2}\s\d{4}-\d{4} | # Brazil Intl +55 XX XXXX-XXXX
0\d{2}\s\d{4}\s\d{4} | # Brazil STD 0XX XXXX XXXX
\+55\d{11} | # +55 XXXXXXXXXXX
\+55\d{10} | # +55 XXXXXXXXXX
0\d{10} | # 0XXXXXXXXXX
\+33\s\d\s\d{2}\s\d{2}\s\d{2}\s\d{2} | # France Intl +33 X XX XX XX XX
0\d\s\d{2}\s\d{2}\s\d{2}\s\d{2} | # France STD 0X XX XX XX XX
\+33\d{9} | # +33 XXXXXXXXX
0\d{9} | # 0XXXXXXXXX
\+7\s\d{3}\s\d{3}-\d{2}-\d{2} | # Russia Intl +7 XXX XXX-XX-XX
8\s\d{3}\s\d{3}-\d{2}-\d{2} | # Russia STD 8 XXX XXX-XX-XX
\+7\d{10} | # +7 XXXXXXXXXX
8\d{10} | # 8 XXXXXXXXXX
\+27\s\d{2}\s\d{3}\s\d{4} | # South Africa Intl +27 XX XXX XXXX
0\d{2}\s\d{3}\s\d{4} | # South Africa STD 0XX XXX XXXX
\+27\d{9} | # +27 XXXXXXXXX
0\d{9} | # 0XXXXXXXXX
\+52\s\d{3}\s\d{3}\s\d{4} | # Mexico Intl +52 XXX XXX XXXX
\+52\s\d{2}\s\d{4}\s\d{4} | # Mexico Intl +52 XX XXXX XXXX
01\s\d{3}\s\d{4} | # Mexico STD 01 XXX XXXX
\+52\d{10} | # +52 XXXXXXXXXX
01\d{7} | # 01 XXXXXXX
\+234\s\d{3}\s\d{3}\s\d{4} | # Nigeria Intl +234 XXX XXX XXXX
0\d{3}\s\d{3}\s\d{4} | # Nigeria STD 0XXX XXX XXXX
\+234\d{10} | # +234 XXXXXXXXXX
0\d{10} | # 0XXXXXXXXXX
\+971\s\d\s\d{3}\s\d{4} | # UAE Intl +971 X XXX XXXX
0\d\s\d{3}\s\d{4} | # UAE STD 0X XXX XXXX
\+971\d{8} | # +971 XXXXXXXX
0\d{8} | # 0XXXXXXXX
\+54\s9\s\d{3}\s\d{3}\s\d{4} | # Argentina Intl +54 9 XXX XXX XXXX
\+54\s\d{1}\s\d{4}\s\d{4} | # Argentina Intl +54 X XXXX XXXX
0\d{3}\s\d{4} | # Argentina STD 0XXX XXXX
\+54\d{10} | # +54 9 XXXXXXXXXX
\+54\d{9} | # +54 XXXXXXXXX
0\d{7} | # 0XXXXXXX
\+966\s\d\s\d{3}\s\d{4} | # Saudi Intl +966 X XXX XXXX
0\d\s\d{3}\s\d{4} | # Saudi STD 0X XXX XXXX
\+966\d{8} | # +966 XXXXXXXX
0\d{8} | # 0XXXXXXXX
\+1\d{10} | # +1 XXXXXXXXXX
\+1\s\d{3}\s\d{3}\s\d{4} | # +1 XXX XXX XXXX
\d{5}\s\d{5} | # XXXXX XXXXX
\d{10} | # XXXXXXXXXX
\+44\d{10} | # +44 XXXXXXXXXX
0\d{10} | # 0XXXXXXXXXX
\+61\d{9} | # +61 XXXXXXXXX
0\d{9} | # 0XXXXXXXXX
\+91\d{10} | # +91 XXXXXXXXXX
\+49\d{12} | # +49 XXXXXXXXXXXX
\+49\d{10} | # +49 XXXXXXXXXX
0\d{11} | # 0XXXXXXXXXXX
\+86\d{11} | # +86 XXXXXXXXXXX
\+81\d{10} | # +81 XXXXXXXXXX
\+81\d{9} | # +81 XXXXXXXXX
0\d{9} | # 0XXXXXXXXX
\+55\d{11} | # +55 XXXXXXXXXXX
\+55\d{10} | # +55 XXXXXXXXXX
0\d{10} | # 0XXXXXXXXXX
\+33\d{9} | # +33 XXXXXXXXX
0\d{9} | # 0XXXXXXXXX
\+7\d{10} | # +7 XXXXXXXXXX
8\d{10} | # 8 XXXXXXXXXX
\+27\d{9} | # +27 XXXXXXXXX
0\d{9} | # 0XXXXXXXXX (South Africa STD)
\+52\d{10} | # +52 XXXXXXXXXX
01\d{7} | # 01 XXXXXXX
\+234\d{10} | # +234 XXXXXXXXXX
0\d{10} | # 0XXXXXXXXXX
\+971\d{8} | # +971 XXXXXXXX
0\d{8} | # 0XXXXXXXX
\+54\s9\s\d{10} | # +54 9 XXXXXXXXXX
\+54\d{9} | # +54 XXXXXXXXX
0\d{7} | # 0XXXXXXX
\+966\d{8} | # +966 XXXXXXXX
0\d{8} # 0XXXXXXXX
\+\d{3}-\d{3}-\d{4}
)
''',re.VERBOSE)
# Email regex
email_regex = re.compile(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}\b')
# URL and links regex, updated to avoid conflicts with email domains
link_regex = re.compile(r'\b(?:https?:\/\/)?(?:www\.)[a-zA-Z0-9-]+\.(?:com|co\.in|co|io|org|net|edu|gov|mil|int|uk|us|in|de|au|app|tech|xyz|info|biz|fr|dev)\b')
# Find all matches in the text
phone_numbers = [num for num in combined_phone_regex.findall(text) if len(num) >= 5]
emails = email_regex.findall(text)
links_RE = [link for link in link_regex.findall(text) if len(link)>=11]
# Remove profile links that might conflict with emails
links_RE = [link for link in links_RE if not any(email in link for email in emails)]
return {
"phone_numbers": phone_numbers,
"emails": emails,
"links_RE": links_RE
}
# preprocessing the data
def process_extracted_text(extracted_text):
# Load JSON data
data = json.dumps(extracted_text, indent=4)
data = json.loads(data)
# Create a single dictionary to hold combined results
combined_results = {
"phone_numbers": [],
"emails": [],
"links_RE": []
}
# Process each text entry
for filename, text in data.items():
contact_details = extract_contact_details(text)
# Extend combined results with the details from this file
combined_results["phone_numbers"].extend(contact_details["phone_numbers"])
combined_results["emails"].extend(contact_details["emails"])
combined_results["links_RE"].extend(contact_details["links_RE"])
# Convert the combined results to JSON
#combined_results_json = json.dumps(combined_results, indent=4)
combined_results_json = combined_results
# Print the final JSON results
print("Combined contact details in JSON format:")
print(combined_results_json)
return combined_results_json
# Function to remove duplicates (case-insensitive) from each list in the dictionary
def remove_duplicates_case_insensitive(data_dict):
for key, value_list in data_dict.items():
seen = set()
unique_list = []
for item in value_list:
if item.lower() not in seen:
unique_list.append(item) # Add original item (preserving its case)
seen.add(item.lower()) # Track lowercase version
# Update the dictionary with unique values
data_dict[key] = unique_list
return data_dict
# Process the model output for parsed result
def process_resume_data(LLMdata,cont_data,extracted_text):
# Removing duplicate emails
unique_emails = []
for email in cont_data['emails']:
if not any(email.lower() == existing_email.lower() for existing_email in LLMdata['Email']):
unique_emails.append(email)
# Removing duplicate links (case insensitive)
unique_links = []
for link in cont_data['links_RE']:
if not any(link.lower() == existing_link.lower() for existing_link in LLMdata['Link']):
unique_links.append(link)
# Removing duplicate phone numbers
normalized_contact = [num[-10:] for num in LLMdata['Contact']]
unique_numbers = []
for num in cont_data['phone_numbers']:
if num[-10:] not in normalized_contact:
unique_numbers.append(num)
# Add unique emails, links, and phone numbers to the original LLMdata
LLMdata['Email'] += unique_emails
LLMdata['Link'] += unique_links
LLMdata['Contact'] += unique_numbers
# Apply the function to the data
LLMdata=remove_duplicates_case_insensitive(LLMdata)
# Initialize the processed data dictionary
processed_data = {
"name": [],
"contact_number": [],
"Designation":[],
"email": [],
"Location": [],
"Link": [],
"Company":[],
"extracted_text": extracted_text
}
#LLM
processed_data['name'].extend(LLMdata.get('Name', None))
#processed_data['contact_number'].extend(LLMdata.get('Contact', []))
processed_data['Designation'].extend(LLMdata.get('Designation', []))
#processed_data['email'].extend(LLMdata.get("Email", []))
processed_data['Location'].extend(LLMdata.get('Address', []))
#processed_data['Link'].extend(LLMdata.get('Link', []))
processed_data['Company'].extend(LLMdata.get('Company', []))
#Contact
#processed_data['email'].extend(cont_data.get("emails", []))
#processed_data['contact_number'].extend(cont_data.get("phone_numbers", []))
#processed_data['Link'].extend(cont_data.get("links_RE", []))
#New_merge_data
processed_data['email'].extend(LLMdata['Email'])
processed_data['contact_number'].extend(LLMdata['Contact'])
processed_data['Link'].extend(LLMdata['Link'])
#to remove not found fields
# List of keys to check for 'Not found'
keys_to_check = ["name", "contact_number", "Designation", "email", "Location", "Link", "Company"]
# Replace 'Not found' with an empty list for each key
for key in keys_to_check:
if processed_data[key] == ['Not found'] or processed_data[key] == ['not found']:
processed_data[key] = []
return processed_data |