File size: 4,239 Bytes
97132db
 
 
 
567a60e
97132db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
567a60e
97132db
 
 
 
 
 
567a60e
 
 
 
 
97132db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# libraries
from flask import Flask, render_template, request, redirect, url_for, flash, session, send_from_directory
import os
from utility.utils import extract_text_from_images,Data_Extractor,json_to_llm_str,process_extracted_text,process_resume_data
from backup.backup import NER_Model
# Flask App
app = Flask(__name__)
app.secret_key = 'your_secret_key'
app.config['UPLOAD_FOLDER'] = 'uploads/'

UPLOAD_FOLDER = 'static/uploads/'
RESULT_FOLDER = 'static/results/'
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
os.makedirs(RESULT_FOLDER, exist_ok=True)

if not os.path.exists(app.config['UPLOAD_FOLDER']):
    os.makedirs(app.config['UPLOAD_FOLDER'])

@app.route('/')
def index():
    uploaded_files = session.get('uploaded_files', [])
    return render_template('index.html', uploaded_files=uploaded_files)

@app.route('/upload', methods=['POST'])
def upload_file():
    if 'files' not in request.files:
        flash('No file part')
        return redirect(request.url)

    files = request.files.getlist('files')  # Get multiple files
    if not files or all(file.filename == '' for file in files):
        flash('No selected files')
        return redirect(request.url)

    uploaded_files = []
    for file in files:
        if file:
            filename = file.filename
            file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename))
            uploaded_files.append(filename)

    session['uploaded_files'] = uploaded_files
    flash('Files successfully uploaded')
    return redirect(url_for('index'))

@app.route('/remove_file')
def remove_file():
    uploaded_files = session.get('uploaded_files', [])
    for filename in uploaded_files:
        os.remove(os.path.join(app.config['UPLOAD_FOLDER'], filename))
    session.pop('uploaded_files', None)
    flash('Files successfully removed')
    return redirect(url_for('index'))

@app.route('/process', methods=['POST'])
def process_file():
    uploaded_files = session.get('uploaded_files', [])
    if not uploaded_files:
        flash('No files selected for processing')
        return redirect(url_for('index'))

    # Create a list of file paths for the extracted text function
    file_paths = [os.path.join(app.config['UPLOAD_FOLDER'], filename) for filename in uploaded_files]

    # Extract text from all images
    extracted_text,processed_Img = extract_text_from_images(file_paths,RESULT_FOLDER)
    # Convert PDF to text   
    print("extracted_text----------------------------",extracted_text)
    print("extracted_text type----------------------------",type(extracted_text))

    print("processed_Img----------------------------",processed_Img)
    print("processed_Img type----------------------------",type(processed_Img))

    
    try:
        # Call the Gemma model API and get the professional data
         llmText=json_to_llm_str(extracted_text)
         print("llmText---------->",llmText)
         LLMdata = Data_Extractor(llmText)
         print("LLM data----------------------------",LLMdata)        
              
    except Exception as e:
         # Handling any exceptions during the process
         print(f"An error occurred: {e}")
         # Run the backup model in case of an exception
         print("Running backup model...")   
         
         text=json_to_llm_str(extracted_text)
         LLMdata=NER_Model(text)
         print("NER data----------------------------",LLMdata)            
         
     
    cont_data=process_extracted_text(extracted_text)
    print("cont_data----------------------------",cont_data) 
    #storing the paresed results
    processed_data = process_resume_data(LLMdata,cont_data,extracted_text)    

    session['processed_data'] = processed_data
    session['processed_Img'] = processed_Img
    flash('Data processed and analyzed successfully ')
    return redirect(url_for('result'))

@app.route('/result')
def result():
    processed_data = session.get('processed_data', {})
    processed_Img = session.get('processed_Img', {})
    return render_template('result.html', data=processed_data,Img=processed_Img)

@app.route('/uploads/<filename>')
def uploaded_file(filename):
    return send_from_directory(app.config['UPLOAD_FOLDER'], filename)

if __name__ == '__main__':
    app.run(debug=True)