Spaces:
Sleeping
Sleeping
File size: 6,138 Bytes
97132db af5935b 567a60e 099f191 af5935b 73884d7 e634f6b 73884d7 af5935b 97132db c676e89 97132db c676e89 1acf205 97132db f8f385d af5935b 97132db af5935b 97132db af5935b 97132db f8f385d 97132db f8f385d af5935b 97132db f8f385d 97132db af5935b 97132db f8f385d 97132db 6c1d851 f8f385d 97132db af5935b 97132db f8f385d 97132db af5935b 97132db af5935b 97132db f8f385d 97132db af5935b 97132db af5935b 97132db af5935b d99a2b0 af5935b d99a2b0 1acf205 f8f385d d99a2b0 af5935b f8f385d af5935b 97132db f8f385d af5935b 97132db f8f385d af5935b 97132db af5935b 97132db af5935b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
# libraries
from flask import Flask, render_template, request, redirect, url_for, flash, session, send_from_directory
import os
import logging
from utility.utils import extract_text_from_images, Data_Extractor, json_to_llm_str, process_extracted_text, process_resume_data
from backup.backup import NER_Model
from paddleocr import PaddleOCR
# Configure logging
logging.basicConfig(
level=logging.INFO,
handlers=[
logging.StreamHandler() # Remove FileHandler and log only to the console
]
)
# Flask App
app = Flask(__name__)
app.secret_key = 'your_secret_key'
app.config['UPLOAD_FOLDER'] = 'uploads/'
app.config['RESULT_FOLDER'] = 'uploads/'
UPLOAD_FOLDER = 'static/uploads/'
RESULT_FOLDER = 'static/results/'
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
os.makedirs(RESULT_FOLDER, exist_ok=True)
if not os.path.exists(app.config['UPLOAD_FOLDER']):
os.makedirs(app.config['UPLOAD_FOLDER'])
if not os.path.exists(app.config['RESULT_FOLDER']):
os.makedirs(app.config['RESULT_FOLDER'])
# Set the PaddleOCR home directory to a writable location
os.environ['PADDLEOCR_HOME'] = os.path.join(app.config['UPLOAD_FOLDER'], '.paddleocr') # Change made here
@app.route('/')
def index():
uploaded_files = session.get('uploaded_files', []) # Retrieve the session data
logging.info(f"Accessed index page, uploaded files: {uploaded_files}")
return render_template('index.html', uploaded_files=uploaded_files)
@app.route('/upload', methods=['POST'])
def upload_file():
if 'files' not in request.files:
flash('No file part')
logging.warning("No file part found in the request")
return redirect(request.url)
files = request.files.getlist('files') # Get multiple files
if not files or all(file.filename == '' for file in files):
flash('No selected files')
logging.warning("No files selected for upload")
return redirect(request.url)
uploaded_files = session.get('uploaded_files', []) # Get the existing session data
for file in files:
if file:
filename = file.filename
file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
file.save(file_path)
uploaded_files.append(filename) # Add each file to the session's list
logging.info(f"Uploaded file: {filename}")
session['uploaded_files'] = uploaded_files # Save uploaded files in session
flash('Files successfully uploaded')
logging.info(f"Files successfully uploaded: {uploaded_files}")
return redirect(url_for('index'))
@app.route('/remove_file')
def remove_file():
uploaded_files = session.get('uploaded_files', []) # Get the uploaded files from the session
for filename in uploaded_files:
file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
if os.path.exists(file_path): # Check if the file exists before trying to remove it
os.remove(file_path)
logging.info(f"Removed file: {filename}")
else:
logging.warning(f"File not found for removal: {filename}")
session.pop('uploaded_files', None) # Clear the session files
flash('Files successfully removed')
logging.info("All uploaded files removed")
return redirect(url_for('index'))
@app.route('/process', methods=['POST'])
def process_file():
uploaded_files = session.get('uploaded_files', []) # Get files from the session
if not uploaded_files:
flash('No files selected for processing')
logging.warning("No files selected for processing")
return redirect(url_for('index'))
# Create a list of file paths for the extracted text function
file_paths = [os.path.join(app.config['UPLOAD_FOLDER'], filename) for filename in uploaded_files]
logging.info(f"Processing files: {file_paths}")
extracted_text = {} # Initialize extracted_text
try:
# Extract text from all images
extracted_text, processed_Img = extract_text_from_images(file_paths, RESULT_FOLDER)
logging.info(f"Extracted text: {extracted_text}")
logging.info(f"Processed images: {processed_Img}")
# Call the Gemma model API and get the professional data
llmText = json_to_llm_str(extracted_text)
logging.info(f"LLM text: {llmText}")
LLMdata = Data_Extractor(llmText)
logging.info(f"LLM data: {LLMdata}")
except Exception as e:
logging.error(f"Error during LLM processing: {e}")
logging.info("Running backup model...")
# Default assignment for LLMdata in case of error
LLMdata = {}
# Run the backup model in case of an exception
if extracted_text:
text = json_to_llm_str(extracted_text)
LLMdata = NER_Model(text)
logging.info(f"NER model data: {LLMdata}")
else:
logging.warning("No extracted text available for backup model")
cont_data = process_extracted_text(extracted_text)
logging.info(f"Contextual data: {cont_data}")
# Storing the parsed results in session
processed_data = process_resume_data(LLMdata, cont_data, extracted_text)
session['processed_data'] = processed_data
session['processed_Img'] = processed_Img
session.modified = True # Ensure session is updated
flash('Data processed and analyzed successfully')
logging.info("Data processed and analyzed successfully")
return redirect(url_for('result'))
@app.route('/result')
def result():
processed_data = session.get('processed_data', {}) # Retrieve processed data from the session
processed_Img = session.get('processed_Img', {}) # Retrieve processed images from the session
logging.info(f"Displaying results: Data - {processed_data}, Images - {processed_Img}")
return render_template('result.html', data=processed_data, Img=processed_Img)
@app.route('/uploads/<filename>')
def uploaded_file(filename):
logging.info(f"Serving file: {filename}")
return send_from_directory(app.config['UPLOAD_FOLDER'], filename)
if __name__ == '__main__':
logging.info("Starting Flask app")
app.run(debug=True)
|