WebashalarForML's picture
Update app.py
1acf205 verified
raw
history blame
5.77 kB
# libraries
from flask import Flask, render_template, request, redirect, url_for, flash, session, send_from_directory
import os
import logging
from utility.utils import extract_text_from_images, Data_Extractor, json_to_llm_str, process_extracted_text, process_resume_data
from backup.backup import NER_Model
from paddleocr import PaddleOCR
# Configure logging
logging.basicConfig(
level=logging.INFO,
handlers=[
logging.StreamHandler() # Remove FileHandler and log only to the console
]
)
# Flask App
app = Flask(__name__)
app.secret_key = 'your_secret_key'
app.config['UPLOAD_FOLDER'] = 'uploads/'
app.config['RESULT_FOLDER'] = 'uploads/'
UPLOAD_FOLDER = 'static/uploads/'
RESULT_FOLDER = 'static/results/'
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
os.makedirs(RESULT_FOLDER, exist_ok=True)
if not os.path.exists(app.config['UPLOAD_FOLDER']):
os.makedirs(app.config['UPLOAD_FOLDER'])
if not os.path.exists(app.config['RESULT_FOLDER']):
os.makedirs(app.config['RESULT_FOLDER'])
# Set the PaddleOCR home directory to a writable location
os.environ['PADDLEOCR_HOME'] = os.path.join(app.config['UPLOAD_FOLDER'], '.paddleocr') # Change made here
@app.route('/')
def index():
uploaded_files = session.get('uploaded_files', [])
logging.info(f"Accessed index page, uploaded files: {uploaded_files}")
return render_template('index.html', uploaded_files=uploaded_files)
@app.route('/upload', methods=['POST'])
def upload_file():
if 'files' not in request.files:
flash('No file part')
logging.warning("No file part found in the request")
return redirect(request.url)
files = request.files.getlist('files') # Get multiple files
if not files or all(file.filename == '' for file in files):
flash('No selected files')
logging.warning("No files selected for upload")
return redirect(request.url)
uploaded_files = []
for file in files:
if file:
filename = file.filename
file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename))
uploaded_files.append(filename)
logging.info(f"Uploaded file: {filename}")
session['uploaded_files'] = uploaded_files
flash('Files successfully uploaded')
logging.info(f"Files successfully uploaded: {uploaded_files}")
return redirect(url_for('index'))
@app.route('/remove_file')
def remove_file():
uploaded_files = session.get('uploaded_files', [])
for filename in uploaded_files:
file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
if os.path.exists(file_path): # Check if the file exists before trying to remove it
os.remove(file_path)
logging.info(f"Removed file: {filename}")
else:
logging.warning(f"File not found for removal: {filename}")
session.pop('uploaded_files', None)
flash('Files successfully removed')
logging.info("All uploaded files removed")
return redirect(url_for('index'))
@app.route('/process', methods=['POST'])
def process_file():
uploaded_files = session.get('uploaded_files', [])
if not uploaded_files:
flash('No files selected for processing')
logging.warning("No files selected for processing")
return redirect(url_for('index'))
# Create a list of file paths for the extracted text function
file_paths = [os.path.join(app.config['UPLOAD_FOLDER'], filename) for filename in uploaded_files]
logging.info(f"Processing files: {file_paths}")
extracted_text = {} # Initialize extracted_text # Change made here
try:
# Extract text from all images
extracted_text, processed_Img = extract_text_from_images(file_paths, RESULT_FOLDER)
logging.info(f"Extracted text: {extracted_text}")
logging.info(f"Processed images: {processed_Img}")
# Call the Gemma model API and get the professional data
llmText = json_to_llm_str(extracted_text)
logging.info(f"LLM text: {llmText}")
LLMdata = Data_Extractor(llmText)
logging.info(f"LLM data: {LLMdata}")
except Exception as e:
logging.error(f"Error during LLM processing: {e}")
logging.info("Running backup model...")
# Run the backup model in case of an exception
if extracted_text: # Ensure extracted_text has a value before using it # Change made here
text = json_to_llm_str(extracted_text)
LLMdata = NER_Model(text)
logging.info(f"NER model data: {LLMdata}")
else:
logging.warning("No extracted text available for backup model") # Change made here
cont_data = process_extracted_text(extracted_text)
logging.info(f"Contextual data: {cont_data}")
# Storing the parsed results
processed_data = process_resume_data(LLMdata, cont_data, extracted_text)
logging.info(f"Processed data: {processed_data}")
session['processed_data'] = processed_data
session['processed_Img'] = processed_Img
flash('Data processed and analyzed successfully')
logging.info("Data processed and analyzed successfully")
return redirect(url_for('result'))
@app.route('/result')
def result():
processed_data = session.get('processed_data', {})
processed_Img = session.get('processed_Img', {})
logging.info(f"Displaying results: Data - {processed_data}, Images - {processed_Img}")
return render_template('result.html', data=processed_data, Img=processed_Img)
@app.route('/uploads/<filename>')
def uploaded_file(filename):
logging.info(f"Serving file: {filename}")
return send_from_directory(app.config['UPLOAD_FOLDER'], filename)
if __name__ == '__main__':
logging.info("Starting Flask app")
app.run(debug=True)