Spaces:
Sleeping
Sleeping
from collections import defaultdict | |
import numpy as np | |
import torch | |
from seqeval.metrics.v1 import _prf_divide | |
def extract_tp_actual_correct(y_true, y_pred): | |
entities_true = defaultdict(set) | |
entities_pred = defaultdict(set) | |
for type_name, (start, end), idx in y_true: | |
entities_true[type_name].add((start, end, idx)) | |
for type_name, (start, end), idx in y_pred: | |
entities_pred[type_name].add((start, end, idx)) | |
target_names = sorted(set(entities_true.keys()) | set(entities_pred.keys())) | |
tp_sum = np.array([], dtype=np.int32) | |
pred_sum = np.array([], dtype=np.int32) | |
true_sum = np.array([], dtype=np.int32) | |
for type_name in target_names: | |
entities_true_type = entities_true.get(type_name, set()) | |
entities_pred_type = entities_pred.get(type_name, set()) | |
tp_sum = np.append(tp_sum, len(entities_true_type & entities_pred_type)) | |
pred_sum = np.append(pred_sum, len(entities_pred_type)) | |
true_sum = np.append(true_sum, len(entities_true_type)) | |
return pred_sum, tp_sum, true_sum, target_names | |
def flatten_for_eval(y_true, y_pred): | |
all_true = [] | |
all_pred = [] | |
for i, (true, pred) in enumerate(zip(y_true, y_pred)): | |
all_true.extend([t + [i] for t in true]) | |
all_pred.extend([p + [i] for p in pred]) | |
return all_true, all_pred | |
def compute_prf(y_true, y_pred, average='micro'): | |
y_true, y_pred = flatten_for_eval(y_true, y_pred) | |
pred_sum, tp_sum, true_sum, target_names = extract_tp_actual_correct(y_true, y_pred) | |
if average == 'micro': | |
tp_sum = np.array([tp_sum.sum()]) | |
pred_sum = np.array([pred_sum.sum()]) | |
true_sum = np.array([true_sum.sum()]) | |
precision = _prf_divide( | |
numerator=tp_sum, | |
denominator=pred_sum, | |
metric='precision', | |
modifier='predicted', | |
average=average, | |
warn_for=('precision', 'recall', 'f-score'), | |
zero_division='warn' | |
) | |
recall = _prf_divide( | |
numerator=tp_sum, | |
denominator=true_sum, | |
metric='recall', | |
modifier='true', | |
average=average, | |
warn_for=('precision', 'recall', 'f-score'), | |
zero_division='warn' | |
) | |
denominator = precision + recall | |
denominator[denominator == 0.] = 1 | |
f_score = 2 * (precision * recall) / denominator | |
return {'precision': precision[0], 'recall': recall[0], 'f_score': f_score[0]} | |
class Evaluator: | |
def __init__(self, all_true, all_outs): | |
self.all_true = all_true | |
self.all_outs = all_outs | |
def get_entities_fr(self, ents): | |
all_ents = [] | |
for s, e, lab in ents: | |
all_ents.append([lab, (s, e)]) | |
return all_ents | |
def transform_data(self): | |
all_true_ent = [] | |
all_outs_ent = [] | |
for i, j in zip(self.all_true, self.all_outs): | |
e = self.get_entities_fr(i) | |
all_true_ent.append(e) | |
e = self.get_entities_fr(j) | |
all_outs_ent.append(e) | |
return all_true_ent, all_outs_ent | |
def evaluate(self): | |
all_true_typed, all_outs_typed = self.transform_data() | |
precision, recall, f1 = compute_prf(all_true_typed, all_outs_typed).values() | |
output_str = f"P: {precision:.2%}\tR: {recall:.2%}\tF1: {f1:.2%}\n" | |
return output_str, f1 | |
def is_nested(idx1, idx2): | |
# Return True if idx2 is nested inside idx1 or vice versa | |
return (idx1[0] <= idx2[0] and idx1[1] >= idx2[1]) or (idx2[0] <= idx1[0] and idx2[1] >= idx1[1]) | |
def has_overlapping(idx1, idx2): | |
overlapping = True | |
if idx1[:2] == idx2[:2]: | |
return overlapping | |
if (idx1[0] > idx2[1] or idx2[0] > idx1[1]): | |
overlapping = False | |
return overlapping | |
def has_overlapping_nested(idx1, idx2): | |
# Return True if idx1 and idx2 overlap, but neither is nested inside the other | |
if idx1[:2] == idx2[:2]: | |
return True | |
if ((idx1[0] > idx2[1] or idx2[0] > idx1[1]) or is_nested(idx1, idx2)) and idx1 != idx2: | |
return False | |
else: | |
return True | |
def greedy_search(spans, flat_ner=True): # start, end, class, score | |
if flat_ner: | |
has_ov = has_overlapping | |
else: | |
has_ov = has_overlapping_nested | |
new_list = [] | |
span_prob = sorted(spans, key=lambda x: -x[-1]) | |
for i in range(len(spans)): | |
b = span_prob[i] | |
flag = False | |
for new in new_list: | |
if has_ov(b[:-1], new): | |
flag = True | |
break | |
if not flag: | |
new_list.append(b[:-1]) | |
new_list = sorted(new_list, key=lambda x: x[0]) | |
return new_list | |