Spaces:
Sleeping
Sleeping
WebashalarForML
commited on
Upload 5 files
Browse files- backup/backup.py +75 -0
- backup/model.py +412 -0
- backup/requirements.txt +6 -0
- backup/save_load.py +20 -0
- backup/train.py +131 -0
backup/backup.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .model import GLiNER
|
2 |
+
|
3 |
+
# Initialize GLiNER with the base model
|
4 |
+
model = GLiNER.from_pretrained("urchade/gliner_mediumv2.1")
|
5 |
+
|
6 |
+
# Sample text for entity prediction
|
7 |
+
text = """
|
8 |
+
lenskart m: (0)9428002330 Lenskart Store,Surat m: (0)9723817060) e:lenskartsurat@gmail.com Store Address UG-4.Ascon City.Opp.Maheshwari Bhavan,Citylight,Surat-395007"""
|
9 |
+
|
10 |
+
# Labels for entity prediction
|
11 |
+
# # Most GLiNER models should work best when entity types are in lower case or title case
|
12 |
+
# labels = ["Person", "Mail", "Number", "Address", "Organization","Designation"]
|
13 |
+
|
14 |
+
# # Perform entity prediction
|
15 |
+
# entities = model.predict_entities(text, labels, threshold=0.5)
|
16 |
+
|
17 |
+
|
18 |
+
def NER_Model(text):
|
19 |
+
|
20 |
+
labels = ["Person", "Mail", "Number", "Address", "Organization","Designation","Link"]
|
21 |
+
|
22 |
+
# Perform entity prediction
|
23 |
+
entities = model.predict_entities(text, labels, threshold=0.5)
|
24 |
+
|
25 |
+
# Initialize the processed data dictionary
|
26 |
+
processed_data = {
|
27 |
+
"Name": [],
|
28 |
+
"Contact": [],
|
29 |
+
"Designation": [],
|
30 |
+
"Address": [],
|
31 |
+
"Link": [],
|
32 |
+
"Company": [],
|
33 |
+
"Email": [],
|
34 |
+
"extracted_text": "",
|
35 |
+
}
|
36 |
+
|
37 |
+
for entity in entities:
|
38 |
+
|
39 |
+
print(entity["text"], "=>", entity["label"])
|
40 |
+
|
41 |
+
#loading the data into json
|
42 |
+
if entity["label"]==labels[0]:
|
43 |
+
processed_data['Name'].extend([entity["text"]])
|
44 |
+
|
45 |
+
if entity["label"]==labels[1]:
|
46 |
+
processed_data['Email'].extend([entity["text"]])
|
47 |
+
|
48 |
+
if entity["label"]==labels[2]:
|
49 |
+
processed_data['Contact'].extend([entity["text"]])
|
50 |
+
|
51 |
+
if entity["label"]==labels[3]:
|
52 |
+
processed_data['Address'].extend([entity["text"]])
|
53 |
+
|
54 |
+
if entity["label"]==labels[4]:
|
55 |
+
processed_data['Company'].extend([entity["text"]])
|
56 |
+
|
57 |
+
if entity["label"]==labels[5]:
|
58 |
+
processed_data['Designation'].extend([entity["text"]])
|
59 |
+
|
60 |
+
if entity["label"]==labels[6]:
|
61 |
+
processed_data['Link'].extend([entity["text"]])
|
62 |
+
|
63 |
+
|
64 |
+
processed_data['Address']=[', '.join(processed_data['Address'])]
|
65 |
+
processed_data['extracted_text']=[text]
|
66 |
+
|
67 |
+
return processed_data
|
68 |
+
|
69 |
+
# result=NER_Model(text)
|
70 |
+
# print(result)
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
|
backup/model.py
ADDED
@@ -0,0 +1,412 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
from pathlib import Path
|
4 |
+
import re
|
5 |
+
from typing import Dict, Optional, Union
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from .modules.layers import LstmSeq2SeqEncoder
|
9 |
+
from .modules.base import InstructBase
|
10 |
+
from .modules.evaluator import Evaluator, greedy_search
|
11 |
+
from .modules.span_rep import SpanRepLayer
|
12 |
+
from .modules.token_rep import TokenRepLayer
|
13 |
+
from torch import nn
|
14 |
+
from torch.nn.utils.rnn import pad_sequence
|
15 |
+
from huggingface_hub import PyTorchModelHubMixin, hf_hub_download
|
16 |
+
from huggingface_hub.utils import HfHubHTTPError
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
class GLiNER(InstructBase, PyTorchModelHubMixin):
|
21 |
+
def __init__(self, config):
|
22 |
+
super().__init__(config)
|
23 |
+
|
24 |
+
self.config = config
|
25 |
+
|
26 |
+
# [ENT] token
|
27 |
+
self.entity_token = "<<ENT>>"
|
28 |
+
self.sep_token = "<<SEP>>"
|
29 |
+
|
30 |
+
# usually a pretrained bidirectional transformer, returns first subtoken representation
|
31 |
+
self.token_rep_layer = TokenRepLayer(model_name=config.model_name, fine_tune=config.fine_tune,
|
32 |
+
subtoken_pooling=config.subtoken_pooling, hidden_size=config.hidden_size,
|
33 |
+
add_tokens=[self.entity_token, self.sep_token])
|
34 |
+
|
35 |
+
# hierarchical representation of tokens
|
36 |
+
self.rnn = LstmSeq2SeqEncoder(
|
37 |
+
input_size=config.hidden_size,
|
38 |
+
hidden_size=config.hidden_size // 2,
|
39 |
+
num_layers=1,
|
40 |
+
bidirectional=True,
|
41 |
+
)
|
42 |
+
|
43 |
+
# span representation
|
44 |
+
self.span_rep_layer = SpanRepLayer(
|
45 |
+
span_mode=config.span_mode,
|
46 |
+
hidden_size=config.hidden_size,
|
47 |
+
max_width=config.max_width,
|
48 |
+
dropout=config.dropout,
|
49 |
+
)
|
50 |
+
|
51 |
+
# prompt representation (FFN)
|
52 |
+
self.prompt_rep_layer = nn.Sequential(
|
53 |
+
nn.Linear(config.hidden_size, config.hidden_size * 4),
|
54 |
+
nn.Dropout(config.dropout),
|
55 |
+
nn.ReLU(),
|
56 |
+
nn.Linear(config.hidden_size * 4, config.hidden_size)
|
57 |
+
)
|
58 |
+
|
59 |
+
def compute_score_train(self, x):
|
60 |
+
span_idx = x['span_idx'] * x['span_mask'].unsqueeze(-1)
|
61 |
+
|
62 |
+
new_length = x['seq_length'].clone()
|
63 |
+
new_tokens = []
|
64 |
+
all_len_prompt = []
|
65 |
+
num_classes_all = []
|
66 |
+
|
67 |
+
# add prompt to the tokens
|
68 |
+
for i in range(len(x['tokens'])):
|
69 |
+
all_types_i = list(x['classes_to_id'][i].keys())
|
70 |
+
# multiple entity types in all_types. Prompt is appended at the start of tokens
|
71 |
+
entity_prompt = []
|
72 |
+
num_classes_all.append(len(all_types_i))
|
73 |
+
# add enity types to prompt
|
74 |
+
for entity_type in all_types_i:
|
75 |
+
entity_prompt.append(self.entity_token) # [ENT] token
|
76 |
+
entity_prompt.append(entity_type) # entity type
|
77 |
+
entity_prompt.append(self.sep_token) # [SEP] token
|
78 |
+
|
79 |
+
# prompt format:
|
80 |
+
# [ENT] entity_type [ENT] entity_type ... [ENT] entity_type [SEP]
|
81 |
+
|
82 |
+
# add prompt to the tokens
|
83 |
+
tokens_p = entity_prompt + x['tokens'][i]
|
84 |
+
|
85 |
+
# input format:
|
86 |
+
# [ENT] entity_type_1 [ENT] entity_type_2 ... [ENT] entity_type_m [SEP] token_1 token_2 ... token_n
|
87 |
+
|
88 |
+
# update length of the sequence (add prompt length to the original length)
|
89 |
+
new_length[i] = new_length[i] + len(entity_prompt)
|
90 |
+
# update tokens
|
91 |
+
new_tokens.append(tokens_p)
|
92 |
+
# store prompt length
|
93 |
+
all_len_prompt.append(len(entity_prompt))
|
94 |
+
|
95 |
+
# create a mask using num_classes_all (0, if it exceeds the number of classes, 1 otherwise)
|
96 |
+
max_num_classes = max(num_classes_all)
|
97 |
+
entity_type_mask = torch.arange(max_num_classes).unsqueeze(0).expand(len(num_classes_all), -1).to(
|
98 |
+
x['span_mask'].device)
|
99 |
+
entity_type_mask = entity_type_mask < torch.tensor(num_classes_all).unsqueeze(-1).to(
|
100 |
+
x['span_mask'].device) # [batch_size, max_num_classes]
|
101 |
+
|
102 |
+
# compute all token representations
|
103 |
+
bert_output = self.token_rep_layer(new_tokens, new_length)
|
104 |
+
word_rep_w_prompt = bert_output["embeddings"] # embeddings for all tokens (with prompt)
|
105 |
+
mask_w_prompt = bert_output["mask"] # mask for all tokens (with prompt)
|
106 |
+
|
107 |
+
# get word representation (after [SEP]), mask (after [SEP]) and entity type representation (before [SEP])
|
108 |
+
word_rep = [] # word representation (after [SEP])
|
109 |
+
mask = [] # mask (after [SEP])
|
110 |
+
entity_type_rep = [] # entity type representation (before [SEP])
|
111 |
+
for i in range(len(x['tokens'])):
|
112 |
+
prompt_entity_length = all_len_prompt[i] # length of prompt for this example
|
113 |
+
# get word representation (after [SEP])
|
114 |
+
word_rep.append(word_rep_w_prompt[i, prompt_entity_length:prompt_entity_length + x['seq_length'][i]])
|
115 |
+
# get mask (after [SEP])
|
116 |
+
mask.append(mask_w_prompt[i, prompt_entity_length:prompt_entity_length + x['seq_length'][i]])
|
117 |
+
|
118 |
+
# get entity type representation (before [SEP])
|
119 |
+
entity_rep = word_rep_w_prompt[i, :prompt_entity_length - 1] # remove [SEP]
|
120 |
+
entity_rep = entity_rep[0::2] # it means that we take every second element starting from the second one
|
121 |
+
entity_type_rep.append(entity_rep)
|
122 |
+
|
123 |
+
# padding for word_rep, mask and entity_type_rep
|
124 |
+
word_rep = pad_sequence(word_rep, batch_first=True) # [batch_size, seq_len, hidden_size]
|
125 |
+
mask = pad_sequence(mask, batch_first=True) # [batch_size, seq_len]
|
126 |
+
entity_type_rep = pad_sequence(entity_type_rep, batch_first=True) # [batch_size, len_types, hidden_size]
|
127 |
+
|
128 |
+
# compute span representation
|
129 |
+
word_rep = self.rnn(word_rep, mask)
|
130 |
+
span_rep = self.span_rep_layer(word_rep, span_idx)
|
131 |
+
|
132 |
+
# compute final entity type representation (FFN)
|
133 |
+
entity_type_rep = self.prompt_rep_layer(entity_type_rep) # (batch_size, len_types, hidden_size)
|
134 |
+
num_classes = entity_type_rep.shape[1] # number of entity types
|
135 |
+
|
136 |
+
# similarity score
|
137 |
+
scores = torch.einsum('BLKD,BCD->BLKC', span_rep, entity_type_rep)
|
138 |
+
|
139 |
+
return scores, num_classes, entity_type_mask
|
140 |
+
|
141 |
+
def forward(self, x):
|
142 |
+
# compute span representation
|
143 |
+
scores, num_classes, entity_type_mask = self.compute_score_train(x)
|
144 |
+
batch_size = scores.shape[0]
|
145 |
+
|
146 |
+
# loss for filtering classifier
|
147 |
+
logits_label = scores.view(-1, num_classes)
|
148 |
+
labels = x["span_label"].view(-1) # (batch_size * num_spans)
|
149 |
+
mask_label = labels != -1 # (batch_size * num_spans)
|
150 |
+
labels.masked_fill_(~mask_label, 0) # Set the labels of padding tokens to 0
|
151 |
+
|
152 |
+
# one-hot encoding
|
153 |
+
labels_one_hot = torch.zeros(labels.size(0), num_classes + 1, dtype=torch.float32).to(scores.device)
|
154 |
+
labels_one_hot.scatter_(1, labels.unsqueeze(1), 1) # Set the corresponding index to 1
|
155 |
+
labels_one_hot = labels_one_hot[:, 1:] # Remove the first column
|
156 |
+
# Shape of labels_one_hot: (batch_size * num_spans, num_classes)
|
157 |
+
|
158 |
+
# compute loss (without reduction)
|
159 |
+
all_losses = F.binary_cross_entropy_with_logits(logits_label, labels_one_hot,
|
160 |
+
reduction='none')
|
161 |
+
# mask loss using entity_type_mask (B, C)
|
162 |
+
masked_loss = all_losses.view(batch_size, -1, num_classes) * entity_type_mask.unsqueeze(1)
|
163 |
+
all_losses = masked_loss.view(-1, num_classes)
|
164 |
+
# expand mask_label to all_losses
|
165 |
+
mask_label = mask_label.unsqueeze(-1).expand_as(all_losses)
|
166 |
+
# put lower loss for in label_one_hot (2 for positive, 1 for negative)
|
167 |
+
weight_c = labels_one_hot + 1
|
168 |
+
# apply mask
|
169 |
+
all_losses = all_losses * mask_label.float() * weight_c
|
170 |
+
return all_losses.sum()
|
171 |
+
|
172 |
+
def compute_score_eval(self, x, device):
|
173 |
+
# check if classes_to_id is dict
|
174 |
+
assert isinstance(x['classes_to_id'], dict), "classes_to_id must be a dict"
|
175 |
+
|
176 |
+
span_idx = (x['span_idx'] * x['span_mask'].unsqueeze(-1)).to(device)
|
177 |
+
|
178 |
+
all_types = list(x['classes_to_id'].keys())
|
179 |
+
# multiple entity types in all_types. Prompt is appended at the start of tokens
|
180 |
+
entity_prompt = []
|
181 |
+
|
182 |
+
# add enity types to prompt
|
183 |
+
for entity_type in all_types:
|
184 |
+
entity_prompt.append(self.entity_token)
|
185 |
+
entity_prompt.append(entity_type)
|
186 |
+
|
187 |
+
entity_prompt.append(self.sep_token)
|
188 |
+
|
189 |
+
prompt_entity_length = len(entity_prompt)
|
190 |
+
|
191 |
+
# add prompt
|
192 |
+
tokens_p = [entity_prompt + tokens for tokens in x['tokens']]
|
193 |
+
seq_length_p = x['seq_length'] + prompt_entity_length
|
194 |
+
|
195 |
+
out = self.token_rep_layer(tokens_p, seq_length_p)
|
196 |
+
|
197 |
+
word_rep_w_prompt = out["embeddings"]
|
198 |
+
mask_w_prompt = out["mask"]
|
199 |
+
|
200 |
+
# remove prompt
|
201 |
+
word_rep = word_rep_w_prompt[:, prompt_entity_length:, :]
|
202 |
+
mask = mask_w_prompt[:, prompt_entity_length:]
|
203 |
+
|
204 |
+
# get_entity_type_rep
|
205 |
+
entity_type_rep = word_rep_w_prompt[:, :prompt_entity_length - 1, :]
|
206 |
+
# extract [ENT] tokens (which are at even positions in entity_type_rep)
|
207 |
+
entity_type_rep = entity_type_rep[:, 0::2, :]
|
208 |
+
|
209 |
+
entity_type_rep = self.prompt_rep_layer(entity_type_rep) # (batch_size, len_types, hidden_size)
|
210 |
+
|
211 |
+
word_rep = self.rnn(word_rep, mask)
|
212 |
+
|
213 |
+
span_rep = self.span_rep_layer(word_rep, span_idx)
|
214 |
+
|
215 |
+
local_scores = torch.einsum('BLKD,BCD->BLKC', span_rep, entity_type_rep)
|
216 |
+
|
217 |
+
return local_scores
|
218 |
+
|
219 |
+
@torch.no_grad()
|
220 |
+
def predict(self, x, flat_ner=False, threshold=0.5):
|
221 |
+
self.eval()
|
222 |
+
local_scores = self.compute_score_eval(x, device=next(self.parameters()).device)
|
223 |
+
spans = []
|
224 |
+
for i, _ in enumerate(x["tokens"]):
|
225 |
+
local_i = local_scores[i]
|
226 |
+
wh_i = [i.tolist() for i in torch.where(torch.sigmoid(local_i) > threshold)]
|
227 |
+
span_i = []
|
228 |
+
for s, k, c in zip(*wh_i):
|
229 |
+
if s + k < len(x["tokens"][i]):
|
230 |
+
span_i.append((s, s + k, x["id_to_classes"][c + 1], local_i[s, k, c]))
|
231 |
+
span_i = greedy_search(span_i, flat_ner)
|
232 |
+
spans.append(span_i)
|
233 |
+
return spans
|
234 |
+
|
235 |
+
def predict_entities(self, text, labels, flat_ner=True, threshold=0.5):
|
236 |
+
tokens = []
|
237 |
+
start_token_idx_to_text_idx = []
|
238 |
+
end_token_idx_to_text_idx = []
|
239 |
+
for match in re.finditer(r'\w+(?:[-_]\w+)*|\S', text):
|
240 |
+
tokens.append(match.group())
|
241 |
+
start_token_idx_to_text_idx.append(match.start())
|
242 |
+
end_token_idx_to_text_idx.append(match.end())
|
243 |
+
|
244 |
+
input_x = {"tokenized_text": tokens, "ner": None}
|
245 |
+
x = self.collate_fn([input_x], labels)
|
246 |
+
output = self.predict(x, flat_ner=flat_ner, threshold=threshold)
|
247 |
+
|
248 |
+
entities = []
|
249 |
+
for start_token_idx, end_token_idx, ent_type in output[0]:
|
250 |
+
start_text_idx = start_token_idx_to_text_idx[start_token_idx]
|
251 |
+
end_text_idx = end_token_idx_to_text_idx[end_token_idx]
|
252 |
+
entities.append({
|
253 |
+
"start": start_token_idx_to_text_idx[start_token_idx],
|
254 |
+
"end": end_token_idx_to_text_idx[end_token_idx],
|
255 |
+
"text": text[start_text_idx:end_text_idx],
|
256 |
+
"label": ent_type,
|
257 |
+
})
|
258 |
+
return entities
|
259 |
+
|
260 |
+
def evaluate(self, test_data, flat_ner=False, threshold=0.5, batch_size=12, entity_types=None):
|
261 |
+
self.eval()
|
262 |
+
data_loader = self.create_dataloader(test_data, batch_size=batch_size, entity_types=entity_types, shuffle=False)
|
263 |
+
device = next(self.parameters()).device
|
264 |
+
all_preds = []
|
265 |
+
all_trues = []
|
266 |
+
for x in data_loader:
|
267 |
+
for k, v in x.items():
|
268 |
+
if isinstance(v, torch.Tensor):
|
269 |
+
x[k] = v.to(device)
|
270 |
+
batch_predictions = self.predict(x, flat_ner, threshold)
|
271 |
+
all_preds.extend(batch_predictions)
|
272 |
+
all_trues.extend(x["entities"])
|
273 |
+
evaluator = Evaluator(all_trues, all_preds)
|
274 |
+
out, f1 = evaluator.evaluate()
|
275 |
+
return out, f1
|
276 |
+
|
277 |
+
@classmethod
|
278 |
+
def _from_pretrained(
|
279 |
+
cls,
|
280 |
+
*,
|
281 |
+
model_id: str,
|
282 |
+
revision: Optional[str],
|
283 |
+
cache_dir: Optional[Union[str, Path]],
|
284 |
+
force_download: bool,
|
285 |
+
proxies: Optional[Dict],
|
286 |
+
resume_download: bool,
|
287 |
+
local_files_only: bool,
|
288 |
+
token: Union[str, bool, None],
|
289 |
+
map_location: str = "cpu",
|
290 |
+
strict: bool = False,
|
291 |
+
**model_kwargs,
|
292 |
+
):
|
293 |
+
# 1. Backwards compatibility: Use "gliner_base.pt" and "gliner_multi.pt" with all data
|
294 |
+
filenames = ["gliner_base.pt", "gliner_multi.pt"]
|
295 |
+
for filename in filenames:
|
296 |
+
model_file = Path(model_id) / filename
|
297 |
+
if not model_file.exists():
|
298 |
+
try:
|
299 |
+
model_file = hf_hub_download(
|
300 |
+
repo_id=model_id,
|
301 |
+
filename=filename,
|
302 |
+
revision=revision,
|
303 |
+
cache_dir=cache_dir,
|
304 |
+
force_download=force_download,
|
305 |
+
proxies=proxies,
|
306 |
+
resume_download=resume_download,
|
307 |
+
token=token,
|
308 |
+
local_files_only=local_files_only,
|
309 |
+
)
|
310 |
+
except HfHubHTTPError:
|
311 |
+
continue
|
312 |
+
dict_load = torch.load(model_file, map_location=torch.device(map_location))
|
313 |
+
config = dict_load["config"]
|
314 |
+
state_dict = dict_load["model_weights"]
|
315 |
+
config.model_name = "microsoft/deberta-v3-base" if filename == "gliner_base.pt" else "microsoft/mdeberta-v3-base"
|
316 |
+
model = cls(config)
|
317 |
+
model.load_state_dict(state_dict, strict=strict, assign=True)
|
318 |
+
# Required to update flair's internals as well:
|
319 |
+
model.to(map_location)
|
320 |
+
return model
|
321 |
+
|
322 |
+
# 2. Newer format: Use "pytorch_model.bin" and "gliner_config.json"
|
323 |
+
from .train import load_config_as_namespace
|
324 |
+
|
325 |
+
model_file = Path(model_id) / "pytorch_model.bin"
|
326 |
+
if not model_file.exists():
|
327 |
+
model_file = hf_hub_download(
|
328 |
+
repo_id=model_id,
|
329 |
+
filename="pytorch_model.bin",
|
330 |
+
revision=revision,
|
331 |
+
cache_dir=cache_dir,
|
332 |
+
force_download=force_download,
|
333 |
+
proxies=proxies,
|
334 |
+
resume_download=resume_download,
|
335 |
+
token=token,
|
336 |
+
local_files_only=local_files_only,
|
337 |
+
)
|
338 |
+
config_file = Path(model_id) / "gliner_config.json"
|
339 |
+
if not config_file.exists():
|
340 |
+
config_file = hf_hub_download(
|
341 |
+
repo_id=model_id,
|
342 |
+
filename="gliner_config.json",
|
343 |
+
revision=revision,
|
344 |
+
cache_dir=cache_dir,
|
345 |
+
force_download=force_download,
|
346 |
+
proxies=proxies,
|
347 |
+
resume_download=resume_download,
|
348 |
+
token=token,
|
349 |
+
local_files_only=local_files_only,
|
350 |
+
)
|
351 |
+
config = load_config_as_namespace(config_file)
|
352 |
+
model = cls(config)
|
353 |
+
state_dict = torch.load(model_file, map_location=torch.device(map_location))
|
354 |
+
model.load_state_dict(state_dict, strict=strict, assign=True)
|
355 |
+
model.to(map_location)
|
356 |
+
return model
|
357 |
+
|
358 |
+
def save_pretrained(
|
359 |
+
self,
|
360 |
+
save_directory: Union[str, Path],
|
361 |
+
*,
|
362 |
+
config: Optional[Union[dict, "DataclassInstance"]] = None,
|
363 |
+
repo_id: Optional[str] = None,
|
364 |
+
push_to_hub: bool = False,
|
365 |
+
**push_to_hub_kwargs,
|
366 |
+
) -> Optional[str]:
|
367 |
+
"""
|
368 |
+
Save weights in local directory.
|
369 |
+
|
370 |
+
Args:
|
371 |
+
save_directory (`str` or `Path`):
|
372 |
+
Path to directory in which the model weights and configuration will be saved.
|
373 |
+
config (`dict` or `DataclassInstance`, *optional*):
|
374 |
+
Model configuration specified as a key/value dictionary or a dataclass instance.
|
375 |
+
push_to_hub (`bool`, *optional*, defaults to `False`):
|
376 |
+
Whether or not to push your model to the Huggingface Hub after saving it.
|
377 |
+
repo_id (`str`, *optional*):
|
378 |
+
ID of your repository on the Hub. Used only if `push_to_hub=True`. Will default to the folder name if
|
379 |
+
not provided.
|
380 |
+
kwargs:
|
381 |
+
Additional key word arguments passed along to the [`~ModelHubMixin.push_to_hub`] method.
|
382 |
+
"""
|
383 |
+
save_directory = Path(save_directory)
|
384 |
+
save_directory.mkdir(parents=True, exist_ok=True)
|
385 |
+
|
386 |
+
# save model weights/files
|
387 |
+
torch.save(self.state_dict(), save_directory / "pytorch_model.bin")
|
388 |
+
|
389 |
+
# save config (if provided)
|
390 |
+
if config is None:
|
391 |
+
config = self.config
|
392 |
+
if config is not None:
|
393 |
+
if isinstance(config, argparse.Namespace):
|
394 |
+
config = vars(config)
|
395 |
+
(save_directory / "gliner_config.json").write_text(json.dumps(config, indent=2))
|
396 |
+
|
397 |
+
# push to the Hub if required
|
398 |
+
if push_to_hub:
|
399 |
+
kwargs = push_to_hub_kwargs.copy() # soft-copy to avoid mutating input
|
400 |
+
if config is not None: # kwarg for `push_to_hub`
|
401 |
+
kwargs["config"] = config
|
402 |
+
if repo_id is None:
|
403 |
+
repo_id = save_directory.name # Defaults to `save_directory` name
|
404 |
+
return self.push_to_hub(repo_id=repo_id, **kwargs)
|
405 |
+
return None
|
406 |
+
|
407 |
+
def to(self, device):
|
408 |
+
super().to(device)
|
409 |
+
import flair
|
410 |
+
|
411 |
+
flair.device = device
|
412 |
+
return self
|
backup/requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
huggingface_hub
|
4 |
+
flair
|
5 |
+
seqeval
|
6 |
+
tqdm
|
backup/save_load.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from model import GLiNER
|
3 |
+
|
4 |
+
|
5 |
+
def save_model(current_model, path):
|
6 |
+
config = current_model.config
|
7 |
+
dict_save = {"model_weights": current_model.state_dict(), "config": config}
|
8 |
+
torch.save(dict_save, path)
|
9 |
+
|
10 |
+
|
11 |
+
def load_model(path, model_name=None, device=None):
|
12 |
+
dict_load = torch.load(path, map_location=torch.device('cpu'))
|
13 |
+
config = dict_load["config"]
|
14 |
+
|
15 |
+
if model_name is not None:
|
16 |
+
config.model_name = model_name
|
17 |
+
|
18 |
+
loaded_model = GLiNER(config)
|
19 |
+
loaded_model.load_state_dict(dict_load["model_weights"])
|
20 |
+
return loaded_model.to(device) if device is not None else loaded_model
|
backup/train.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import yaml
|
6 |
+
from tqdm import tqdm
|
7 |
+
from transformers import get_cosine_schedule_with_warmup
|
8 |
+
|
9 |
+
# from model_nested import NerFilteredSemiCRF
|
10 |
+
from .model import GLiNER
|
11 |
+
from .modules.run_evaluation import get_for_all_path, sample_train_data
|
12 |
+
from save_load import save_model, load_model
|
13 |
+
import json
|
14 |
+
|
15 |
+
|
16 |
+
# train function
|
17 |
+
def train(model, optimizer, train_data, num_steps=1000, eval_every=100, log_dir="logs", warmup_ratio=0.1,
|
18 |
+
train_batch_size=8, device='cuda'):
|
19 |
+
model.train()
|
20 |
+
|
21 |
+
# initialize data loaders
|
22 |
+
train_loader = model.create_dataloader(train_data, batch_size=train_batch_size, shuffle=True)
|
23 |
+
|
24 |
+
pbar = tqdm(range(num_steps))
|
25 |
+
|
26 |
+
if warmup_ratio < 1:
|
27 |
+
num_warmup_steps = int(num_steps * warmup_ratio)
|
28 |
+
else:
|
29 |
+
num_warmup_steps = int(warmup_ratio)
|
30 |
+
|
31 |
+
scheduler = get_cosine_schedule_with_warmup(
|
32 |
+
optimizer,
|
33 |
+
num_warmup_steps=num_warmup_steps,
|
34 |
+
num_training_steps=num_steps
|
35 |
+
)
|
36 |
+
|
37 |
+
iter_train_loader = iter(train_loader)
|
38 |
+
|
39 |
+
for step in pbar:
|
40 |
+
try:
|
41 |
+
x = next(iter_train_loader)
|
42 |
+
except StopIteration:
|
43 |
+
iter_train_loader = iter(train_loader)
|
44 |
+
x = next(iter_train_loader)
|
45 |
+
|
46 |
+
for k, v in x.items():
|
47 |
+
if isinstance(v, torch.Tensor):
|
48 |
+
x[k] = v.to(device)
|
49 |
+
|
50 |
+
try:
|
51 |
+
loss = model(x) # Forward pass
|
52 |
+
except:
|
53 |
+
continue
|
54 |
+
|
55 |
+
# check if loss is nan
|
56 |
+
if torch.isnan(loss):
|
57 |
+
continue
|
58 |
+
|
59 |
+
loss.backward() # Compute gradients
|
60 |
+
optimizer.step() # Update parameters
|
61 |
+
scheduler.step() # Update learning rate schedule
|
62 |
+
optimizer.zero_grad() # Reset gradients
|
63 |
+
|
64 |
+
description = f"step: {step} | epoch: {step // len(train_loader)} | loss: {loss.item():.2f}"
|
65 |
+
|
66 |
+
if (step + 1) % eval_every == 0:
|
67 |
+
current_path = os.path.join(log_dir, f'model_{step + 1}')
|
68 |
+
save_model(model, current_path)
|
69 |
+
#val_data_dir = "/gpfswork/rech/ohy/upa43yu/NER_datasets" # can be obtained from "https://drive.google.com/file/d/1T-5IbocGka35I7X3CE6yKe5N_Xg2lVKT/view"
|
70 |
+
#get_for_all_path(model, step, log_dir, val_data_dir) # you can remove this comment if you want to evaluate the model
|
71 |
+
|
72 |
+
model.train()
|
73 |
+
|
74 |
+
pbar.set_description(description)
|
75 |
+
|
76 |
+
|
77 |
+
def create_parser():
|
78 |
+
parser = argparse.ArgumentParser(description="Span-based NER")
|
79 |
+
parser.add_argument("--config", type=str, default="config.yaml", help="Path to config file")
|
80 |
+
parser.add_argument('--log_dir', type=str, default='logs', help='Path to the log directory')
|
81 |
+
return parser
|
82 |
+
|
83 |
+
|
84 |
+
def load_config_as_namespace(config_file):
|
85 |
+
with open(config_file, 'r') as f:
|
86 |
+
config_dict = yaml.safe_load(f)
|
87 |
+
return argparse.Namespace(**config_dict)
|
88 |
+
|
89 |
+
|
90 |
+
if __name__ == "__main__":
|
91 |
+
# parse args
|
92 |
+
parser = create_parser()
|
93 |
+
args = parser.parse_args()
|
94 |
+
|
95 |
+
# load config
|
96 |
+
config = load_config_as_namespace(args.config)
|
97 |
+
|
98 |
+
config.log_dir = args.log_dir
|
99 |
+
|
100 |
+
try:
|
101 |
+
with open(config.train_data, 'r') as f:
|
102 |
+
data = json.load(f)
|
103 |
+
except:
|
104 |
+
data = sample_train_data(config.train_data, 10000)
|
105 |
+
|
106 |
+
if config.prev_path != "none":
|
107 |
+
model = load_model(config.prev_path)
|
108 |
+
model.config = config
|
109 |
+
else:
|
110 |
+
model = GLiNER(config)
|
111 |
+
|
112 |
+
if torch.cuda.is_available():
|
113 |
+
model = model.cuda()
|
114 |
+
|
115 |
+
lr_encoder = float(config.lr_encoder)
|
116 |
+
lr_others = float(config.lr_others)
|
117 |
+
|
118 |
+
optimizer = torch.optim.AdamW([
|
119 |
+
# encoder
|
120 |
+
{'params': model.token_rep_layer.parameters(), 'lr': lr_encoder},
|
121 |
+
{'params': model.rnn.parameters(), 'lr': lr_others},
|
122 |
+
# projection layers
|
123 |
+
{'params': model.span_rep_layer.parameters(), 'lr': lr_others},
|
124 |
+
{'params': model.prompt_rep_layer.parameters(), 'lr': lr_others},
|
125 |
+
])
|
126 |
+
|
127 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
128 |
+
|
129 |
+
train(model, optimizer, data, num_steps=config.num_steps, eval_every=config.eval_every,
|
130 |
+
log_dir=config.log_dir, warmup_ratio=config.warmup_ratio, train_batch_size=config.train_batch_size,
|
131 |
+
device=device)
|