WebashalarForML commited on
Commit
be85188
1 Parent(s): d9f92af

Update backup/backup.py

Browse files
Files changed (1) hide show
  1. backup/backup.py +1 -17
backup/backup.py CHANGED
@@ -7,14 +7,6 @@ model = GLiNER.from_pretrained("urchade/gliner_mediumv2.1")
7
  text = """
8
  lenskart m: (0)9428002330 Lenskart Store,Surat m: (0)9723817060) e:lenskartsurat@gmail.com Store Address UG-4.Ascon City.Opp.Maheshwari Bhavan,Citylight,Surat-395007"""
9
 
10
- # Labels for entity prediction
11
- # # Most GLiNER models should work best when entity types are in lower case or title case
12
- # labels = ["Person", "Mail", "Number", "Address", "Organization","Designation"]
13
-
14
- # # Perform entity prediction
15
- # entities = model.predict_entities(text, labels, threshold=0.5)
16
-
17
-
18
  def NER_Model(text):
19
 
20
  labels = ["Person", "Mail", "Number", "Address", "Organization","Designation","Link"]
@@ -64,12 +56,4 @@ def NER_Model(text):
64
  processed_data['Address']=[', '.join(processed_data['Address'])]
65
  processed_data['extracted_text']=[text]
66
 
67
- return processed_data
68
-
69
- # result=NER_Model(text)
70
- # print(result)
71
-
72
-
73
-
74
-
75
-
 
7
  text = """
8
  lenskart m: (0)9428002330 Lenskart Store,Surat m: (0)9723817060) e:lenskartsurat@gmail.com Store Address UG-4.Ascon City.Opp.Maheshwari Bhavan,Citylight,Surat-395007"""
9
 
 
 
 
 
 
 
 
 
10
  def NER_Model(text):
11
 
12
  labels = ["Person", "Mail", "Number", "Address", "Organization","Designation","Link"]
 
56
  processed_data['Address']=[', '.join(processed_data['Address'])]
57
  processed_data['extracted_text']=[text]
58
 
59
+ return processed_data