WebashalarForML
commited on
Commit
•
d8b7b87
1
Parent(s):
627c9e7
Create utility/utils.py
Browse files- utility/utils.py +352 -0
utility/utils.py
ADDED
@@ -0,0 +1,352 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# libraries
|
2 |
+
import os
|
3 |
+
from huggingface_hub import InferenceClient
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
import json
|
6 |
+
import re
|
7 |
+
import easyocr
|
8 |
+
import spacy
|
9 |
+
from PIL import Image, ImageEnhance, ImageDraw
|
10 |
+
import cv2
|
11 |
+
import numpy as np
|
12 |
+
from paddleocr import PaddleOCR
|
13 |
+
|
14 |
+
# Load environment variables from .env file
|
15 |
+
load_dotenv()
|
16 |
+
|
17 |
+
# Authenticate with Hugging Face
|
18 |
+
HFT = os.getenv('HF_TOKEN')
|
19 |
+
|
20 |
+
# Initialize the InferenceClient
|
21 |
+
client = InferenceClient(model="mistralai/Mistral-7B-Instruct-v0.3", token=HFT)
|
22 |
+
|
23 |
+
# Initialize EasyOCR reader for extracting text
|
24 |
+
reader = easyocr.Reader(['en'])
|
25 |
+
|
26 |
+
# Initialize spaCy's English model
|
27 |
+
nlp = spacy.load("en_core_web_sm")
|
28 |
+
|
29 |
+
def draw_boxes(image, bounds, color='red', width=2):
|
30 |
+
draw = ImageDraw.Draw(image)
|
31 |
+
for bound in bounds:
|
32 |
+
p0, p1, p2, p3 = bound[0]
|
33 |
+
draw.line([*p0, *p1, *p2, *p3, *p0], fill=color, width=width)
|
34 |
+
return image
|
35 |
+
|
36 |
+
#Image Quality upscaling
|
37 |
+
# Load image using OpenCV
|
38 |
+
def load_image(image_path):
|
39 |
+
return cv2.imread(image_path)
|
40 |
+
|
41 |
+
# Function for upscaling image using OpenCV's INTER_CUBIC or ESRGAN (if available)
|
42 |
+
def upscale_image(image, scale=2):
|
43 |
+
height, width = image.shape[:2]
|
44 |
+
# Simple upscaling using cubic interpolation
|
45 |
+
upscaled_image = cv2.resize(image, (width * scale, height * scale), interpolation=cv2.INTER_CUBIC)
|
46 |
+
return upscaled_image
|
47 |
+
|
48 |
+
# Function to denoise the image (reduce noise)
|
49 |
+
def reduce_noise(image):
|
50 |
+
return cv2.fastNlMeansDenoisingColored(image, None, 10, 10, 7, 21)
|
51 |
+
|
52 |
+
# Function to sharpen the image
|
53 |
+
def sharpen_image(image):
|
54 |
+
kernel = np.array([[0, -1, 0],
|
55 |
+
[-1, 5, -1],
|
56 |
+
[0, -1, 0]])
|
57 |
+
sharpened_image = cv2.filter2D(image, -1, kernel)
|
58 |
+
return sharpened_image
|
59 |
+
|
60 |
+
# Function to increase contrast and enhance details without changing color
|
61 |
+
def enhance_image(image):
|
62 |
+
# Convert from BGR to RGB for PIL processing, then back to BGR
|
63 |
+
pil_img = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
64 |
+
enhancer = ImageEnhance.Contrast(pil_img)
|
65 |
+
enhanced_image = enhancer.enhance(1.5)
|
66 |
+
# Convert back to BGR
|
67 |
+
enhanced_image_bgr = cv2.cvtColor(np.array(enhanced_image), cv2.COLOR_RGB2BGR)
|
68 |
+
return enhanced_image_bgr
|
69 |
+
|
70 |
+
# Complete function to process image
|
71 |
+
def process_image(image_path, scale=2):
|
72 |
+
# Load the image
|
73 |
+
image = load_image(image_path)
|
74 |
+
|
75 |
+
# Upscale the image
|
76 |
+
upscaled_image = upscale_image(image, scale)
|
77 |
+
|
78 |
+
# Reduce noise
|
79 |
+
denoised_image = reduce_noise(upscaled_image)
|
80 |
+
|
81 |
+
# Sharpen the image
|
82 |
+
sharpened_image = sharpen_image(denoised_image)
|
83 |
+
|
84 |
+
# Enhance the image contrast and details without changing color
|
85 |
+
final_image = enhance_image(sharpened_image)
|
86 |
+
|
87 |
+
return final_image
|
88 |
+
|
89 |
+
|
90 |
+
def ocr_with_paddle(img):
|
91 |
+
finaltext = ''
|
92 |
+
ocr = PaddleOCR(lang='en', use_angle_cls=True)
|
93 |
+
# img_path = 'exp.jpeg'
|
94 |
+
result = ocr.ocr(img)
|
95 |
+
|
96 |
+
for i in range(len(result[0])):
|
97 |
+
text = result[0][i][1][0]
|
98 |
+
finaltext += ' '+ text
|
99 |
+
return finaltext
|
100 |
+
|
101 |
+
|
102 |
+
def extract_text_from_images(image_paths):
|
103 |
+
all_extracted_texts = {}
|
104 |
+
all_extracted_imgs={}
|
105 |
+
for image_path in image_paths:
|
106 |
+
# Enhance the image before OCR
|
107 |
+
enhanced_image = process_image(image_path, scale=2)
|
108 |
+
bounds = reader.readtext(enhanced_image)
|
109 |
+
# Draw boxes on the processed image
|
110 |
+
img_result = Image.fromarray(enhanced_image)
|
111 |
+
draw_boxes(img_result, bounds)
|
112 |
+
|
113 |
+
result_image_path = os.path.join(RESULT_FOLDER, f'result_{os.path.basename(image_path)}')
|
114 |
+
img_result.save(result_image_path) # Save the processed image
|
115 |
+
|
116 |
+
# Perform OCR on the enhanced image
|
117 |
+
result=ocr_with_paddle(enhanced_image)
|
118 |
+
|
119 |
+
all_extracted_texts[image_path] =result
|
120 |
+
all_extracted_imgs[image_path] = result_image_path
|
121 |
+
# Convert to JSON-compatible structure
|
122 |
+
all_extracted_imgs_json = {str(k): str(v) for k, v in all_extracted_imgs.items()}
|
123 |
+
return all_extracted_texts,all_extracted_imgs_json
|
124 |
+
|
125 |
+
# Function to call the Gemma model and process the output as Json
|
126 |
+
def Data_Extractor(data, client):
|
127 |
+
text = f'''Act as a Text extractor for the following text given in text: {data}
|
128 |
+
extract text in the following output JSON string:
|
129 |
+
{{
|
130 |
+
"Name": ["Identify and Extract All the person's name from the text."],
|
131 |
+
"Designation": ["Extract All the designation or job title mentioned in the text."],
|
132 |
+
"Company": ["Extract All the company or organization name if mentioned."],
|
133 |
+
"Contact": ["Extract All phone number, including country codes if present."],
|
134 |
+
"Address": ["Extract All the full postal address or location mentioned in the text."],
|
135 |
+
"Email": ["Identify and Extract All valid email addresses mentioned in the text else 'Not found'."],
|
136 |
+
"Link": ["Identify and Extract any website URLs or social media links present in the text."]
|
137 |
+
}}
|
138 |
+
Output:
|
139 |
+
'''
|
140 |
+
# Call the API for inference
|
141 |
+
response = client.text_generation(text, max_new_tokens=600)
|
142 |
+
|
143 |
+
print("parse in text ---:",response)
|
144 |
+
|
145 |
+
# Convert the response text to JSON
|
146 |
+
try:
|
147 |
+
json_data = json.loads(response)
|
148 |
+
return json_data
|
149 |
+
except json.JSONDecodeError as e:
|
150 |
+
return {"error": f"Error decoding JSON: {e}"}
|
151 |
+
|
152 |
+
# For have text compatible to the llm
|
153 |
+
def json_to_llm_str(textJson):
|
154 |
+
str=''
|
155 |
+
for file,item in textJson.items():
|
156 |
+
str+=item + ' '
|
157 |
+
return str
|
158 |
+
|
159 |
+
# Define the RE for extracting the contact details like number, mail , portfolio, website etc
|
160 |
+
def extract_contact_details(text):
|
161 |
+
# Regex patterns
|
162 |
+
# Phone numbers with at least 5 digits in any segment
|
163 |
+
combined_phone_regex = re.compile(r'''
|
164 |
+
(?:
|
165 |
+
#(?:(?:\+91[-.\s]?)?\d{5}[-.\s]?\d{5})|(?:\+?\d{1,3})?[-.\s()]?\d{5,}[-.\s()]?\d{5,}[-.\s()]?\d{1,9} | /^[\.-)( ]*([0-9]{3})[\.-)( ]*([0-9]{3})[\.-)( ]*([0-9]{4})$/ |
|
166 |
+
\+1\s\(\d{3}\)\s\d{3}-\d{4} | # USA/Canada Intl +1 (XXX) XXX-XXXX
|
167 |
+
\(\d{3}\)\s\d{3}-\d{4} | # USA/Canada STD (XXX) XXX-XXXX
|
168 |
+
\(\d{3}\)\s\d{3}\s\d{4} | # USA/Canada (XXX) XXX XXXX
|
169 |
+
\(\d{3}\)\s\d{3}\s\d{3} | # USA/Canada (XXX) XXX XXX
|
170 |
+
\+1\d{10} | # +1 XXXXXXXXXX
|
171 |
+
\d{10} | # XXXXXXXXXX
|
172 |
+
\+44\s\d{4}\s\d{6} | # UK Intl +44 XXXX XXXXXX
|
173 |
+
\+44\s\d{3}\s\d{3}\s\d{4} | # UK Intl +44 XXX XXX XXXX
|
174 |
+
0\d{4}\s\d{6} | # UK STD 0XXXX XXXXXX
|
175 |
+
0\d{3}\s\d{3}\s\d{4} | # UK STD 0XXX XXX XXXX
|
176 |
+
\+44\d{10} | # +44 XXXXXXXXXX
|
177 |
+
0\d{10} | # 0XXXXXXXXXX
|
178 |
+
\+61\s\d\s\d{4}\s\d{4} | # Australia Intl +61 X XXXX XXXX
|
179 |
+
0\d\s\d{4}\s\d{4} | # Australia STD 0X XXXX XXXX
|
180 |
+
\+61\d{9} | # +61 XXXXXXXXX
|
181 |
+
0\d{9} | # 0XXXXXXXXX
|
182 |
+
\+91\s\d{5}-\d{5} | # India Intl +91 XXXXX-XXXXX
|
183 |
+
\+91\s\d{4}-\d{6} | # India Intl +91 XXXX-XXXXXX
|
184 |
+
\+91\s\d{10} | # India Intl +91 XXXXXXXXXX
|
185 |
+
0\d{2}-\d{7} | # India STD 0XX-XXXXXXX
|
186 |
+
\+91\d{10} | # +91 XXXXXXXXXX
|
187 |
+
\+49\s\d{4}\s\d{8} | # Germany Intl +49 XXXX XXXXXXXX
|
188 |
+
\+49\s\d{3}\s\d{7} | # Germany Intl +49 XXX XXXXXXX
|
189 |
+
0\d{3}\s\d{8} | # Germany STD 0XXX XXXXXXXX
|
190 |
+
\+49\d{12} | # +49 XXXXXXXXXXXX
|
191 |
+
\+49\d{10} | # +49 XXXXXXXXXX
|
192 |
+
0\d{11} | # 0XXXXXXXXXXX
|
193 |
+
\+86\s\d{3}\s\d{4}\s\d{4} | # China Intl +86 XXX XXXX XXXX
|
194 |
+
0\d{3}\s\d{4}\s\d{4} | # China STD 0XXX XXXX XXXX
|
195 |
+
\+86\d{11} | # +86 XXXXXXXXXXX
|
196 |
+
\+81\s\d\s\d{4}\s\d{4} | # Japan Intl +81 X XXXX XXXX
|
197 |
+
\+81\s\d{2}\s\d{4}\s\d{4} | # Japan Intl +81 XX XXXX XXXX
|
198 |
+
0\d\s\d{4}\s\d{4} | # Japan STD 0X XXXX XXXX
|
199 |
+
\+81\d{10} | # +81 XXXXXXXXXX
|
200 |
+
\+81\d{9} | # +81 XXXXXXXXX
|
201 |
+
0\d{9} | # 0XXXXXXXXX
|
202 |
+
\+55\s\d{2}\s\d{5}-\d{4} | # Brazil Intl +55 XX XXXXX-XXXX
|
203 |
+
\+55\s\d{2}\s\d{4}-\d{4} | # Brazil Intl +55 XX XXXX-XXXX
|
204 |
+
0\d{2}\s\d{4}\s\d{4} | # Brazil STD 0XX XXXX XXXX
|
205 |
+
\+55\d{11} | # +55 XXXXXXXXXXX
|
206 |
+
\+55\d{10} | # +55 XXXXXXXXXX
|
207 |
+
0\d{10} | # 0XXXXXXXXXX
|
208 |
+
\+33\s\d\s\d{2}\s\d{2}\s\d{2}\s\d{2} | # France Intl +33 X XX XX XX XX
|
209 |
+
0\d\s\d{2}\s\d{2}\s\d{2}\s\d{2} | # France STD 0X XX XX XX XX
|
210 |
+
\+33\d{9} | # +33 XXXXXXXXX
|
211 |
+
0\d{9} | # 0XXXXXXXXX
|
212 |
+
\+7\s\d{3}\s\d{3}-\d{2}-\d{2} | # Russia Intl +7 XXX XXX-XX-XX
|
213 |
+
8\s\d{3}\s\d{3}-\d{2}-\d{2} | # Russia STD 8 XXX XXX-XX-XX
|
214 |
+
\+7\d{10} | # +7 XXXXXXXXXX
|
215 |
+
8\d{10} | # 8 XXXXXXXXXX
|
216 |
+
\+27\s\d{2}\s\d{3}\s\d{4} | # South Africa Intl +27 XX XXX XXXX
|
217 |
+
0\d{2}\s\d{3}\s\d{4} | # South Africa STD 0XX XXX XXXX
|
218 |
+
\+27\d{9} | # +27 XXXXXXXXX
|
219 |
+
0\d{9} | # 0XXXXXXXXX
|
220 |
+
\+52\s\d{3}\s\d{3}\s\d{4} | # Mexico Intl +52 XXX XXX XXXX
|
221 |
+
\+52\s\d{2}\s\d{4}\s\d{4} | # Mexico Intl +52 XX XXXX XXXX
|
222 |
+
01\s\d{3}\s\d{4} | # Mexico STD 01 XXX XXXX
|
223 |
+
\+52\d{10} | # +52 XXXXXXXXXX
|
224 |
+
01\d{7} | # 01 XXXXXXX
|
225 |
+
\+234\s\d{3}\s\d{3}\s\d{4} | # Nigeria Intl +234 XXX XXX XXXX
|
226 |
+
0\d{3}\s\d{3}\s\d{4} | # Nigeria STD 0XXX XXX XXXX
|
227 |
+
\+234\d{10} | # +234 XXXXXXXXXX
|
228 |
+
0\d{10} | # 0XXXXXXXXXX
|
229 |
+
\+971\s\d\s\d{3}\s\d{4} | # UAE Intl +971 X XXX XXXX
|
230 |
+
0\d\s\d{3}\s\d{4} | # UAE STD 0X XXX XXXX
|
231 |
+
\+971\d{8} | # +971 XXXXXXXX
|
232 |
+
0\d{8} | # 0XXXXXXXX
|
233 |
+
\+54\s9\s\d{3}\s\d{3}\s\d{4} | # Argentina Intl +54 9 XXX XXX XXXX
|
234 |
+
\+54\s\d{1}\s\d{4}\s\d{4} | # Argentina Intl +54 X XXXX XXXX
|
235 |
+
0\d{3}\s\d{4} | # Argentina STD 0XXX XXXX
|
236 |
+
\+54\d{10} | # +54 9 XXXXXXXXXX
|
237 |
+
\+54\d{9} | # +54 XXXXXXXXX
|
238 |
+
0\d{7} | # 0XXXXXXX
|
239 |
+
\+966\s\d\s\d{3}\s\d{4} | # Saudi Intl +966 X XXX XXXX
|
240 |
+
0\d\s\d{3}\s\d{4} | # Saudi STD 0X XXX XXXX
|
241 |
+
\+966\d{8} | # +966 XXXXXXXX
|
242 |
+
0\d{8} | # 0XXXXXXXX
|
243 |
+
\+1\d{10} | # +1 XXXXXXXXXX
|
244 |
+
\+1\s\d{3}\s\d{3}\s\d{4} | # +1 XXX XXX XXXX
|
245 |
+
\d{5}\s\d{5} | # XXXXX XXXXX
|
246 |
+
\d{10} | # XXXXXXXXXX
|
247 |
+
\+44\d{10} | # +44 XXXXXXXXXX
|
248 |
+
0\d{10} | # 0XXXXXXXXXX
|
249 |
+
\+61\d{9} | # +61 XXXXXXXXX
|
250 |
+
0\d{9} | # 0XXXXXXXXX
|
251 |
+
\+91\d{10} | # +91 XXXXXXXXXX
|
252 |
+
\+49\d{12} | # +49 XXXXXXXXXXXX
|
253 |
+
\+49\d{10} | # +49 XXXXXXXXXX
|
254 |
+
0\d{11} | # 0XXXXXXXXXXX
|
255 |
+
\+86\d{11} | # +86 XXXXXXXXXXX
|
256 |
+
\+81\d{10} | # +81 XXXXXXXXXX
|
257 |
+
\+81\d{9} | # +81 XXXXXXXXX
|
258 |
+
0\d{9} | # 0XXXXXXXXX
|
259 |
+
\+55\d{11} | # +55 XXXXXXXXXXX
|
260 |
+
\+55\d{10} | # +55 XXXXXXXXXX
|
261 |
+
0\d{10} | # 0XXXXXXXXXX
|
262 |
+
\+33\d{9} | # +33 XXXXXXXXX
|
263 |
+
0\d{9} | # 0XXXXXXXXX
|
264 |
+
\+7\d{10} | # +7 XXXXXXXXXX
|
265 |
+
8\d{10} | # 8 XXXXXXXXXX
|
266 |
+
\+27\d{9} | # +27 XXXXXXXXX
|
267 |
+
0\d{9} | # 0XXXXXXXXX (South Africa STD)
|
268 |
+
\+52\d{10} | # +52 XXXXXXXXXX
|
269 |
+
01\d{7} | # 01 XXXXXXX
|
270 |
+
\+234\d{10} | # +234 XXXXXXXXXX
|
271 |
+
0\d{10} | # 0XXXXXXXXXX
|
272 |
+
\+971\d{8} | # +971 XXXXXXXX
|
273 |
+
0\d{8} | # 0XXXXXXXX
|
274 |
+
\+54\s9\s\d{10} | # +54 9 XXXXXXXXXX
|
275 |
+
\+54\d{9} | # +54 XXXXXXXXX
|
276 |
+
0\d{7} | # 0XXXXXXX
|
277 |
+
\+966\d{8} | # +966 XXXXXXXX
|
278 |
+
0\d{8} # 0XXXXXXXX
|
279 |
+
\+\d{3}-\d{3}-\d{4}
|
280 |
+
)
|
281 |
+
|
282 |
+
''',re.VERBOSE)
|
283 |
+
|
284 |
+
# Email regex
|
285 |
+
email_regex = re.compile(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}\b')
|
286 |
+
|
287 |
+
# Links regex, updated to avoid conflicts with email domains
|
288 |
+
link_regex = re.compile(r'\b(?:https?:\/\/)?(?:www\.)[a-zA-Z0-9-]+\.(?:com|co\.in|co|io|org|net|edu|gov|mil|int|uk|us|in|de|au|app|tech|xyz|info|biz|fr|dev)\b')
|
289 |
+
|
290 |
+
# Find all matches in the text
|
291 |
+
phone_numbers = [num for num in combined_phone_regex.findall(text) if len(num) >= 5]
|
292 |
+
print("phone_numbers--->",phone_numbers)
|
293 |
+
emails = email_regex.findall(text)
|
294 |
+
links_RE = [link for link in link_regex.findall(text) if len(link)>=11]
|
295 |
+
|
296 |
+
# Remove profile links that might conflict with emails
|
297 |
+
links_RE = [link for link in links_RE if not any(email in link for email in emails)]
|
298 |
+
|
299 |
+
return {
|
300 |
+
"phone_numbers": phone_numbers,
|
301 |
+
"emails": emails,
|
302 |
+
"links_RE": links_RE
|
303 |
+
}
|
304 |
+
|
305 |
+
# preprocessing the data
|
306 |
+
def process_extracted_text(extracted_text):
|
307 |
+
# Load JSON data
|
308 |
+
data = json.dumps(extracted_text, indent=4)
|
309 |
+
data = json.loads(data)
|
310 |
+
|
311 |
+
# Create a single dictionary to hold combined results
|
312 |
+
combined_results = {
|
313 |
+
"phone_numbers": [],
|
314 |
+
"emails": [],
|
315 |
+
"links_RE": []
|
316 |
+
}
|
317 |
+
|
318 |
+
# Process each text entry
|
319 |
+
for filename, text in data.items():
|
320 |
+
contact_details = extract_contact_details(text)
|
321 |
+
# Extend combined results with the details from this file
|
322 |
+
combined_results["phone_numbers"].extend(contact_details["phone_numbers"])
|
323 |
+
combined_results["emails"].extend(contact_details["emails"])
|
324 |
+
combined_results["links_RE"].extend(contact_details["links_RE"])
|
325 |
+
|
326 |
+
# Convert the combined results to JSON
|
327 |
+
combined_results_json = combined_results
|
328 |
+
|
329 |
+
# Print the final JSON results
|
330 |
+
print("Combined contact details in JSON format:")
|
331 |
+
print(combined_results_json)
|
332 |
+
|
333 |
+
return combined_results_json
|
334 |
+
|
335 |
+
# Process the model output for parsed result
|
336 |
+
def process_resume_data(LLMdata,cont_data,extracted_text):
|
337 |
+
|
338 |
+
# Initialize the processed data dictionary
|
339 |
+
processed_data = {
|
340 |
+
"name": [LLMdata.get('Name', 'Not found')],
|
341 |
+
"contact_number": [LLMdata.get('Contact', 'Not found')],
|
342 |
+
"Designation":[LLMdata.get('Designation', 'Not found')],
|
343 |
+
"email": [LLMdata.get("Email", 'Not found')],
|
344 |
+
"Location": [LLMdata.get('Address', 'Not found')],
|
345 |
+
"Link": [LLMdata.get('Link', 'Not found')],
|
346 |
+
"Company":[LLMdata.get('Company', 'Not found')],
|
347 |
+
"extracted_text": extracted_text
|
348 |
+
}
|
349 |
+
processed_data['email'].extend(cont_data.get("emails", []))
|
350 |
+
processed_data['contact_number'].extend(cont_data.get("phone_numbers", []))
|
351 |
+
processed_data['Link'].extend(cont_data.get("links_RE", []))
|
352 |
+
return processed_data
|