Spaces:
Sleeping
Sleeping
WebashalarForML
commited on
Commit
•
fcd0a70
1
Parent(s):
6594404
Upload 7 files
Browse files- backup/modules/base.py +150 -0
- backup/modules/data_proc.py +73 -0
- backup/modules/evaluator.py +152 -0
- backup/modules/layers.py +28 -0
- backup/modules/run_evaluation.py +188 -0
- backup/modules/span_rep.py +369 -0
- backup/modules/token_rep.py +54 -0
backup/modules/base.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict
|
2 |
+
from typing import List, Tuple, Dict
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn.utils.rnn import pad_sequence
|
7 |
+
from torch.utils.data import DataLoader
|
8 |
+
import random
|
9 |
+
|
10 |
+
|
11 |
+
class InstructBase(nn.Module):
|
12 |
+
def __init__(self, config):
|
13 |
+
super().__init__()
|
14 |
+
self.max_width = config.max_width
|
15 |
+
self.base_config = config
|
16 |
+
|
17 |
+
def get_dict(self, spans, classes_to_id):
|
18 |
+
dict_tag = defaultdict(int)
|
19 |
+
for span in spans:
|
20 |
+
if span[2] in classes_to_id:
|
21 |
+
dict_tag[(span[0], span[1])] = classes_to_id[span[2]]
|
22 |
+
return dict_tag
|
23 |
+
|
24 |
+
def preprocess_spans(self, tokens, ner, classes_to_id):
|
25 |
+
|
26 |
+
max_len = self.base_config.max_len
|
27 |
+
|
28 |
+
if len(tokens) > max_len:
|
29 |
+
length = max_len
|
30 |
+
tokens = tokens[:max_len]
|
31 |
+
else:
|
32 |
+
length = len(tokens)
|
33 |
+
|
34 |
+
spans_idx = []
|
35 |
+
for i in range(length):
|
36 |
+
spans_idx.extend([(i, i + j) for j in range(self.max_width)])
|
37 |
+
|
38 |
+
dict_lab = self.get_dict(ner, classes_to_id) if ner else defaultdict(int)
|
39 |
+
|
40 |
+
# 0 for null labels
|
41 |
+
span_label = torch.LongTensor([dict_lab[i] for i in spans_idx])
|
42 |
+
spans_idx = torch.LongTensor(spans_idx)
|
43 |
+
|
44 |
+
# mask for valid spans
|
45 |
+
valid_span_mask = spans_idx[:, 1] > length - 1
|
46 |
+
|
47 |
+
# mask invalid positions
|
48 |
+
span_label = span_label.masked_fill(valid_span_mask, -1)
|
49 |
+
|
50 |
+
return {
|
51 |
+
'tokens': tokens,
|
52 |
+
'span_idx': spans_idx,
|
53 |
+
'span_label': span_label,
|
54 |
+
'seq_length': length,
|
55 |
+
'entities': ner,
|
56 |
+
}
|
57 |
+
|
58 |
+
def collate_fn(self, batch_list, entity_types=None):
|
59 |
+
# batch_list: list of dict containing tokens, ner
|
60 |
+
if entity_types is None:
|
61 |
+
negs = self.get_negatives(batch_list, 100)
|
62 |
+
class_to_ids = []
|
63 |
+
id_to_classes = []
|
64 |
+
for b in batch_list:
|
65 |
+
# negs = b["negative"]
|
66 |
+
random.shuffle(negs)
|
67 |
+
|
68 |
+
# negs = negs[:sampled_neg]
|
69 |
+
max_neg_type_ratio = int(self.base_config.max_neg_type_ratio)
|
70 |
+
|
71 |
+
if max_neg_type_ratio == 0:
|
72 |
+
# no negatives
|
73 |
+
neg_type_ratio = 0
|
74 |
+
else:
|
75 |
+
neg_type_ratio = random.randint(0, max_neg_type_ratio)
|
76 |
+
|
77 |
+
if neg_type_ratio == 0:
|
78 |
+
# no negatives
|
79 |
+
negs_i = []
|
80 |
+
else:
|
81 |
+
negs_i = negs[:len(b['ner']) * neg_type_ratio]
|
82 |
+
|
83 |
+
# this is the list of all possible entity types (positive and negative)
|
84 |
+
types = list(set([el[-1] for el in b['ner']] + negs_i))
|
85 |
+
|
86 |
+
# shuffle (every epoch)
|
87 |
+
random.shuffle(types)
|
88 |
+
|
89 |
+
if len(types) != 0:
|
90 |
+
# prob of higher number shoul
|
91 |
+
# random drop
|
92 |
+
if self.base_config.random_drop:
|
93 |
+
num_ents = random.randint(1, len(types))
|
94 |
+
types = types[:num_ents]
|
95 |
+
|
96 |
+
# maximum number of entities types
|
97 |
+
types = types[:int(self.base_config.max_types)]
|
98 |
+
|
99 |
+
# supervised training
|
100 |
+
if "label" in b:
|
101 |
+
types = sorted(b["label"])
|
102 |
+
|
103 |
+
class_to_id = {k: v for v, k in enumerate(types, start=1)}
|
104 |
+
id_to_class = {k: v for v, k in class_to_id.items()}
|
105 |
+
class_to_ids.append(class_to_id)
|
106 |
+
id_to_classes.append(id_to_class)
|
107 |
+
|
108 |
+
batch = [
|
109 |
+
self.preprocess_spans(b["tokenized_text"], b["ner"], class_to_ids[i]) for i, b in enumerate(batch_list)
|
110 |
+
]
|
111 |
+
|
112 |
+
else:
|
113 |
+
class_to_ids = {k: v for v, k in enumerate(entity_types, start=1)}
|
114 |
+
id_to_classes = {k: v for v, k in class_to_ids.items()}
|
115 |
+
batch = [
|
116 |
+
self.preprocess_spans(b["tokenized_text"], b["ner"], class_to_ids) for b in batch_list
|
117 |
+
]
|
118 |
+
|
119 |
+
span_idx = pad_sequence(
|
120 |
+
[b['span_idx'] for b in batch], batch_first=True, padding_value=0
|
121 |
+
)
|
122 |
+
|
123 |
+
span_label = pad_sequence(
|
124 |
+
[el['span_label'] for el in batch], batch_first=True, padding_value=-1
|
125 |
+
)
|
126 |
+
|
127 |
+
return {
|
128 |
+
'seq_length': torch.LongTensor([el['seq_length'] for el in batch]),
|
129 |
+
'span_idx': span_idx,
|
130 |
+
'tokens': [el['tokens'] for el in batch],
|
131 |
+
'span_mask': span_label != -1,
|
132 |
+
'span_label': span_label,
|
133 |
+
'entities': [el['entities'] for el in batch],
|
134 |
+
'classes_to_id': class_to_ids,
|
135 |
+
'id_to_classes': id_to_classes,
|
136 |
+
}
|
137 |
+
|
138 |
+
@staticmethod
|
139 |
+
def get_negatives(batch_list, sampled_neg=5):
|
140 |
+
ent_types = []
|
141 |
+
for b in batch_list:
|
142 |
+
types = set([el[-1] for el in b['ner']])
|
143 |
+
ent_types.extend(list(types))
|
144 |
+
ent_types = list(set(ent_types))
|
145 |
+
# sample negatives
|
146 |
+
random.shuffle(ent_types)
|
147 |
+
return ent_types[:sampled_neg]
|
148 |
+
|
149 |
+
def create_dataloader(self, data, entity_types=None, **kwargs):
|
150 |
+
return DataLoader(data, collate_fn=lambda x: self.collate_fn(x, entity_types), **kwargs)
|
backup/modules/data_proc.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from tqdm import tqdm
|
3 |
+
# ast.literal_eval
|
4 |
+
import ast, re
|
5 |
+
|
6 |
+
path = 'train.json'
|
7 |
+
|
8 |
+
with open(path, 'r') as f:
|
9 |
+
data = json.load(f)
|
10 |
+
|
11 |
+
def tokenize_text(text):
|
12 |
+
return re.findall(r'\w+(?:[-_]\w+)*|\S', text)
|
13 |
+
|
14 |
+
def extract_entity_spans(entry):
|
15 |
+
text = ""
|
16 |
+
len_start = len("What describes ")
|
17 |
+
len_end = len(" in the text?")
|
18 |
+
entity_types = []
|
19 |
+
entity_texts = []
|
20 |
+
|
21 |
+
for c in entry['conversations']:
|
22 |
+
if c['from'] == 'human' and c['value'].startswith('Text: '):
|
23 |
+
text = c['value'][len('Text: '):]
|
24 |
+
tokenized_text = tokenize_text(text)
|
25 |
+
|
26 |
+
if c['from'] == 'human' and c['value'].startswith('What describes '):
|
27 |
+
|
28 |
+
c_type = c['value'][len_start:-len_end]
|
29 |
+
c_type = c_type.replace(' ', '_')
|
30 |
+
entity_types.append(c_type)
|
31 |
+
|
32 |
+
elif c['from'] == 'gpt' and c['value'].startswith('['):
|
33 |
+
if c['value'] == '[]':
|
34 |
+
entity_types = entity_types[:-1]
|
35 |
+
continue
|
36 |
+
|
37 |
+
texts_ents = ast.literal_eval(c['value'])
|
38 |
+
# replace space to _ in texts_ents
|
39 |
+
entity_texts.extend(texts_ents)
|
40 |
+
num_repeat = len(texts_ents) - 1
|
41 |
+
entity_types.extend([entity_types[-1]] * num_repeat)
|
42 |
+
|
43 |
+
entity_spans = []
|
44 |
+
for j, entity_text in enumerate(entity_texts):
|
45 |
+
entity_tokens = tokenize_text(entity_text)
|
46 |
+
matches = []
|
47 |
+
for i in range(len(tokenized_text) - len(entity_tokens) + 1):
|
48 |
+
if " ".join(tokenized_text[i:i + len(entity_tokens)]).lower() == " ".join(entity_tokens).lower():
|
49 |
+
matches.append((i, i + len(entity_tokens) - 1, entity_types[j]))
|
50 |
+
if matches:
|
51 |
+
entity_spans.extend(matches)
|
52 |
+
|
53 |
+
return entity_spans, tokenized_text
|
54 |
+
|
55 |
+
# Usage:
|
56 |
+
# Replace 'entry' with the specific entry from your JSON data
|
57 |
+
entry = data[17818] # For example, taking the first entry
|
58 |
+
entity_spans, tokenized_text = extract_entity_spans(entry)
|
59 |
+
print("Entity Spans:", entity_spans)
|
60 |
+
#print("Tokenized Text:", tokenized_text)
|
61 |
+
|
62 |
+
# create a dict: {"tokenized_text": tokenized_text, "entity_spans": entity_spans}
|
63 |
+
|
64 |
+
all_data = []
|
65 |
+
|
66 |
+
for entry in tqdm(data):
|
67 |
+
entity_spans, tokenized_text = extract_entity_spans(entry)
|
68 |
+
all_data.append({"tokenized_text": tokenized_text, "ner": entity_spans})
|
69 |
+
|
70 |
+
|
71 |
+
with open('train_instruct.json', 'w') as f:
|
72 |
+
json.dump(all_data, f)
|
73 |
+
|
backup/modules/evaluator.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from seqeval.metrics.v1 import _prf_divide
|
6 |
+
|
7 |
+
|
8 |
+
def extract_tp_actual_correct(y_true, y_pred):
|
9 |
+
entities_true = defaultdict(set)
|
10 |
+
entities_pred = defaultdict(set)
|
11 |
+
|
12 |
+
for type_name, (start, end), idx in y_true:
|
13 |
+
entities_true[type_name].add((start, end, idx))
|
14 |
+
for type_name, (start, end), idx in y_pred:
|
15 |
+
entities_pred[type_name].add((start, end, idx))
|
16 |
+
|
17 |
+
target_names = sorted(set(entities_true.keys()) | set(entities_pred.keys()))
|
18 |
+
|
19 |
+
tp_sum = np.array([], dtype=np.int32)
|
20 |
+
pred_sum = np.array([], dtype=np.int32)
|
21 |
+
true_sum = np.array([], dtype=np.int32)
|
22 |
+
for type_name in target_names:
|
23 |
+
entities_true_type = entities_true.get(type_name, set())
|
24 |
+
entities_pred_type = entities_pred.get(type_name, set())
|
25 |
+
tp_sum = np.append(tp_sum, len(entities_true_type & entities_pred_type))
|
26 |
+
pred_sum = np.append(pred_sum, len(entities_pred_type))
|
27 |
+
true_sum = np.append(true_sum, len(entities_true_type))
|
28 |
+
|
29 |
+
return pred_sum, tp_sum, true_sum, target_names
|
30 |
+
|
31 |
+
|
32 |
+
def flatten_for_eval(y_true, y_pred):
|
33 |
+
all_true = []
|
34 |
+
all_pred = []
|
35 |
+
|
36 |
+
for i, (true, pred) in enumerate(zip(y_true, y_pred)):
|
37 |
+
all_true.extend([t + [i] for t in true])
|
38 |
+
all_pred.extend([p + [i] for p in pred])
|
39 |
+
|
40 |
+
return all_true, all_pred
|
41 |
+
|
42 |
+
|
43 |
+
def compute_prf(y_true, y_pred, average='micro'):
|
44 |
+
y_true, y_pred = flatten_for_eval(y_true, y_pred)
|
45 |
+
|
46 |
+
pred_sum, tp_sum, true_sum, target_names = extract_tp_actual_correct(y_true, y_pred)
|
47 |
+
|
48 |
+
if average == 'micro':
|
49 |
+
tp_sum = np.array([tp_sum.sum()])
|
50 |
+
pred_sum = np.array([pred_sum.sum()])
|
51 |
+
true_sum = np.array([true_sum.sum()])
|
52 |
+
|
53 |
+
precision = _prf_divide(
|
54 |
+
numerator=tp_sum,
|
55 |
+
denominator=pred_sum,
|
56 |
+
metric='precision',
|
57 |
+
modifier='predicted',
|
58 |
+
average=average,
|
59 |
+
warn_for=('precision', 'recall', 'f-score'),
|
60 |
+
zero_division='warn'
|
61 |
+
)
|
62 |
+
|
63 |
+
recall = _prf_divide(
|
64 |
+
numerator=tp_sum,
|
65 |
+
denominator=true_sum,
|
66 |
+
metric='recall',
|
67 |
+
modifier='true',
|
68 |
+
average=average,
|
69 |
+
warn_for=('precision', 'recall', 'f-score'),
|
70 |
+
zero_division='warn'
|
71 |
+
)
|
72 |
+
|
73 |
+
denominator = precision + recall
|
74 |
+
denominator[denominator == 0.] = 1
|
75 |
+
f_score = 2 * (precision * recall) / denominator
|
76 |
+
|
77 |
+
return {'precision': precision[0], 'recall': recall[0], 'f_score': f_score[0]}
|
78 |
+
|
79 |
+
|
80 |
+
class Evaluator:
|
81 |
+
def __init__(self, all_true, all_outs):
|
82 |
+
self.all_true = all_true
|
83 |
+
self.all_outs = all_outs
|
84 |
+
|
85 |
+
def get_entities_fr(self, ents):
|
86 |
+
all_ents = []
|
87 |
+
for s, e, lab in ents:
|
88 |
+
all_ents.append([lab, (s, e)])
|
89 |
+
return all_ents
|
90 |
+
|
91 |
+
def transform_data(self):
|
92 |
+
all_true_ent = []
|
93 |
+
all_outs_ent = []
|
94 |
+
for i, j in zip(self.all_true, self.all_outs):
|
95 |
+
e = self.get_entities_fr(i)
|
96 |
+
all_true_ent.append(e)
|
97 |
+
e = self.get_entities_fr(j)
|
98 |
+
all_outs_ent.append(e)
|
99 |
+
return all_true_ent, all_outs_ent
|
100 |
+
|
101 |
+
@torch.no_grad()
|
102 |
+
def evaluate(self):
|
103 |
+
all_true_typed, all_outs_typed = self.transform_data()
|
104 |
+
precision, recall, f1 = compute_prf(all_true_typed, all_outs_typed).values()
|
105 |
+
output_str = f"P: {precision:.2%}\tR: {recall:.2%}\tF1: {f1:.2%}\n"
|
106 |
+
return output_str, f1
|
107 |
+
|
108 |
+
|
109 |
+
def is_nested(idx1, idx2):
|
110 |
+
# Return True if idx2 is nested inside idx1 or vice versa
|
111 |
+
return (idx1[0] <= idx2[0] and idx1[1] >= idx2[1]) or (idx2[0] <= idx1[0] and idx2[1] >= idx1[1])
|
112 |
+
|
113 |
+
|
114 |
+
def has_overlapping(idx1, idx2):
|
115 |
+
overlapping = True
|
116 |
+
if idx1[:2] == idx2[:2]:
|
117 |
+
return overlapping
|
118 |
+
if (idx1[0] > idx2[1] or idx2[0] > idx1[1]):
|
119 |
+
overlapping = False
|
120 |
+
return overlapping
|
121 |
+
|
122 |
+
|
123 |
+
def has_overlapping_nested(idx1, idx2):
|
124 |
+
# Return True if idx1 and idx2 overlap, but neither is nested inside the other
|
125 |
+
if idx1[:2] == idx2[:2]:
|
126 |
+
return True
|
127 |
+
if ((idx1[0] > idx2[1] or idx2[0] > idx1[1]) or is_nested(idx1, idx2)) and idx1 != idx2:
|
128 |
+
return False
|
129 |
+
else:
|
130 |
+
return True
|
131 |
+
|
132 |
+
|
133 |
+
def greedy_search(spans, flat_ner=True): # start, end, class, score
|
134 |
+
|
135 |
+
if flat_ner:
|
136 |
+
has_ov = has_overlapping
|
137 |
+
else:
|
138 |
+
has_ov = has_overlapping_nested
|
139 |
+
|
140 |
+
new_list = []
|
141 |
+
span_prob = sorted(spans, key=lambda x: -x[-1])
|
142 |
+
for i in range(len(spans)):
|
143 |
+
b = span_prob[i]
|
144 |
+
flag = False
|
145 |
+
for new in new_list:
|
146 |
+
if has_ov(b[:-1], new):
|
147 |
+
flag = True
|
148 |
+
break
|
149 |
+
if not flag:
|
150 |
+
new_list.append(b[:-1])
|
151 |
+
new_list = sorted(new_list, key=lambda x: x[0])
|
152 |
+
return new_list
|
backup/modules/layers.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
|
5 |
+
|
6 |
+
|
7 |
+
class LstmSeq2SeqEncoder(nn.Module):
|
8 |
+
def __init__(self, input_size, hidden_size, num_layers=1, dropout=0., bidirectional=False):
|
9 |
+
super(LstmSeq2SeqEncoder, self).__init__()
|
10 |
+
self.lstm = nn.LSTM(input_size=input_size,
|
11 |
+
hidden_size=hidden_size,
|
12 |
+
num_layers=num_layers,
|
13 |
+
dropout=dropout,
|
14 |
+
bidirectional=bidirectional,
|
15 |
+
batch_first=True)
|
16 |
+
|
17 |
+
def forward(self, x, mask, hidden=None):
|
18 |
+
# Packing the input sequence
|
19 |
+
lengths = mask.sum(dim=1).cpu()
|
20 |
+
packed_x = pack_padded_sequence(x, lengths, batch_first=True, enforce_sorted=False)
|
21 |
+
|
22 |
+
# Passing packed sequence through LSTM
|
23 |
+
packed_output, hidden = self.lstm(packed_x, hidden)
|
24 |
+
|
25 |
+
# Unpacking the output sequence
|
26 |
+
output, _ = pad_packed_sequence(packed_output, batch_first=True)
|
27 |
+
|
28 |
+
return output
|
backup/modules/run_evaluation.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import os
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from tqdm import tqdm
|
8 |
+
import random
|
9 |
+
|
10 |
+
|
11 |
+
def open_content(path):
|
12 |
+
paths = glob.glob(os.path.join(path, "*.json"))
|
13 |
+
train, dev, test, labels = None, None, None, None
|
14 |
+
for p in paths:
|
15 |
+
if "train" in p:
|
16 |
+
with open(p, "r") as f:
|
17 |
+
train = json.load(f)
|
18 |
+
elif "dev" in p:
|
19 |
+
with open(p, "r") as f:
|
20 |
+
dev = json.load(f)
|
21 |
+
elif "test" in p:
|
22 |
+
with open(p, "r") as f:
|
23 |
+
test = json.load(f)
|
24 |
+
elif "labels" in p:
|
25 |
+
with open(p, "r") as f:
|
26 |
+
labels = json.load(f)
|
27 |
+
return train, dev, test, labels
|
28 |
+
|
29 |
+
|
30 |
+
def process(data):
|
31 |
+
words = data['sentence'].split()
|
32 |
+
entities = [] # List of entities (start, end, type)
|
33 |
+
|
34 |
+
for entity in data['entities']:
|
35 |
+
start_char, end_char = entity['pos']
|
36 |
+
|
37 |
+
# Initialize variables to keep track of word positions
|
38 |
+
start_word = None
|
39 |
+
end_word = None
|
40 |
+
|
41 |
+
# Iterate through words and find the word positions
|
42 |
+
char_count = 0
|
43 |
+
for i, word in enumerate(words):
|
44 |
+
word_length = len(word)
|
45 |
+
if char_count == start_char:
|
46 |
+
start_word = i
|
47 |
+
if char_count + word_length == end_char:
|
48 |
+
end_word = i
|
49 |
+
break
|
50 |
+
char_count += word_length + 1 # Add 1 for the space
|
51 |
+
|
52 |
+
# Append the word positions to the list
|
53 |
+
entities.append((start_word, end_word, entity['type']))
|
54 |
+
|
55 |
+
# Create a list of word positions for each entity
|
56 |
+
sample = {
|
57 |
+
"tokenized_text": words,
|
58 |
+
"ner": entities
|
59 |
+
}
|
60 |
+
|
61 |
+
return sample
|
62 |
+
|
63 |
+
|
64 |
+
# create dataset
|
65 |
+
def create_dataset(path):
|
66 |
+
train, dev, test, labels = open_content(path)
|
67 |
+
train_dataset = []
|
68 |
+
dev_dataset = []
|
69 |
+
test_dataset = []
|
70 |
+
for data in train:
|
71 |
+
train_dataset.append(process(data))
|
72 |
+
for data in dev:
|
73 |
+
dev_dataset.append(process(data))
|
74 |
+
for data in test:
|
75 |
+
test_dataset.append(process(data))
|
76 |
+
return train_dataset, dev_dataset, test_dataset, labels
|
77 |
+
|
78 |
+
|
79 |
+
@torch.no_grad()
|
80 |
+
def get_for_one_path(path, model):
|
81 |
+
# load the dataset
|
82 |
+
_, _, test_dataset, entity_types = create_dataset(path)
|
83 |
+
|
84 |
+
data_name = path.split("/")[-1] # get the name of the dataset
|
85 |
+
|
86 |
+
# check if the dataset is flat_ner
|
87 |
+
flat_ner = True
|
88 |
+
if any([i in data_name for i in ["ACE", "GENIA", "Corpus"]]):
|
89 |
+
flat_ner = False
|
90 |
+
|
91 |
+
# evaluate the model
|
92 |
+
results, f1 = model.evaluate(test_dataset, flat_ner=flat_ner, threshold=0.5, batch_size=12,
|
93 |
+
entity_types=entity_types)
|
94 |
+
return data_name, results, f1
|
95 |
+
|
96 |
+
|
97 |
+
def get_for_all_path(model, steps, log_dir, data_paths):
|
98 |
+
all_paths = glob.glob(f"{data_paths}/*")
|
99 |
+
|
100 |
+
all_paths = sorted(all_paths)
|
101 |
+
|
102 |
+
# move the model to the device
|
103 |
+
device = next(model.parameters()).device
|
104 |
+
model.to(device)
|
105 |
+
# set the model to eval mode
|
106 |
+
model.eval()
|
107 |
+
|
108 |
+
# log the results
|
109 |
+
save_path = os.path.join(log_dir, "results.txt")
|
110 |
+
|
111 |
+
with open(save_path, "a") as f:
|
112 |
+
f.write("##############################################\n")
|
113 |
+
# write step
|
114 |
+
f.write("step: " + str(steps) + "\n")
|
115 |
+
|
116 |
+
zero_shot_benc = ["mit-movie", "mit-restaurant", "CrossNER_AI", "CrossNER_literature", "CrossNER_music",
|
117 |
+
"CrossNER_politics", "CrossNER_science"]
|
118 |
+
|
119 |
+
zero_shot_benc_results = {}
|
120 |
+
all_results = {} # without crossNER
|
121 |
+
|
122 |
+
for p in tqdm(all_paths):
|
123 |
+
if "sample_" not in p:
|
124 |
+
data_name, results, f1 = get_for_one_path(p, model)
|
125 |
+
# write to file
|
126 |
+
with open(save_path, "a") as f:
|
127 |
+
f.write(data_name + "\n")
|
128 |
+
f.write(str(results) + "\n")
|
129 |
+
|
130 |
+
if data_name in zero_shot_benc:
|
131 |
+
zero_shot_benc_results[data_name] = f1
|
132 |
+
else:
|
133 |
+
all_results[data_name] = f1
|
134 |
+
|
135 |
+
avg_all = sum(all_results.values()) / len(all_results)
|
136 |
+
avg_zs = sum(zero_shot_benc_results.values()) / len(zero_shot_benc_results)
|
137 |
+
|
138 |
+
save_path_table = os.path.join(log_dir, "tables.txt")
|
139 |
+
|
140 |
+
# results for all datasets except crossNER
|
141 |
+
table_bench_all = ""
|
142 |
+
for k, v in all_results.items():
|
143 |
+
table_bench_all += f"{k:20}: {v:.1%}\n"
|
144 |
+
# (20 size aswell for average i.e. :20)
|
145 |
+
table_bench_all += f"{'Average':20}: {avg_all:.1%}"
|
146 |
+
|
147 |
+
# results for zero-shot benchmark
|
148 |
+
table_bench_zeroshot = ""
|
149 |
+
for k, v in zero_shot_benc_results.items():
|
150 |
+
table_bench_zeroshot += f"{k:20}: {v:.1%}\n"
|
151 |
+
table_bench_zeroshot += f"{'Average':20}: {avg_zs:.1%}"
|
152 |
+
|
153 |
+
# write to file
|
154 |
+
with open(save_path_table, "a") as f:
|
155 |
+
f.write("##############################################\n")
|
156 |
+
f.write("step: " + str(steps) + "\n")
|
157 |
+
f.write("Table for all datasets except crossNER\n")
|
158 |
+
f.write(table_bench_all + "\n\n")
|
159 |
+
f.write("Table for zero-shot benchmark\n")
|
160 |
+
f.write(table_bench_zeroshot + "\n")
|
161 |
+
f.write("##############################################\n\n")
|
162 |
+
|
163 |
+
|
164 |
+
def sample_train_data(data_paths, sample_size=10000):
|
165 |
+
all_paths = glob.glob(f"{data_paths}/*")
|
166 |
+
|
167 |
+
all_paths = sorted(all_paths)
|
168 |
+
|
169 |
+
# to exclude the zero-shot benchmark datasets
|
170 |
+
zero_shot_benc = ["CrossNER_AI", "CrossNER_literature", "CrossNER_music",
|
171 |
+
"CrossNER_politics", "CrossNER_science", "ACE 2004"]
|
172 |
+
|
173 |
+
new_train = []
|
174 |
+
# take 10k samples from each dataset
|
175 |
+
for p in tqdm(all_paths):
|
176 |
+
if any([i in p for i in zero_shot_benc]):
|
177 |
+
continue
|
178 |
+
train, dev, test, labels = create_dataset(p)
|
179 |
+
|
180 |
+
# add label key to the train data
|
181 |
+
for i in range(len(train)):
|
182 |
+
train[i]["label"] = labels
|
183 |
+
|
184 |
+
random.shuffle(train)
|
185 |
+
train = train[:sample_size]
|
186 |
+
new_train.extend(train)
|
187 |
+
|
188 |
+
return new_train
|
backup/modules/span_rep.py
ADDED
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from torch import nn
|
4 |
+
|
5 |
+
def create_projection_layer(hidden_size: int, dropout: float, out_dim: int = None) -> nn.Sequential:
|
6 |
+
"""
|
7 |
+
Creates a projection layer with specified configurations.
|
8 |
+
"""
|
9 |
+
if out_dim is None:
|
10 |
+
out_dim = hidden_size
|
11 |
+
|
12 |
+
return nn.Sequential(
|
13 |
+
nn.Linear(hidden_size, out_dim * 4),
|
14 |
+
nn.ReLU(),
|
15 |
+
nn.Dropout(dropout),
|
16 |
+
nn.Linear(out_dim * 4, out_dim)
|
17 |
+
)
|
18 |
+
|
19 |
+
|
20 |
+
class SpanQuery(nn.Module):
|
21 |
+
|
22 |
+
def __init__(self, hidden_size, max_width, trainable=True):
|
23 |
+
super().__init__()
|
24 |
+
|
25 |
+
self.query_seg = nn.Parameter(torch.randn(hidden_size, max_width))
|
26 |
+
|
27 |
+
nn.init.uniform_(self.query_seg, a=-1, b=1)
|
28 |
+
|
29 |
+
if not trainable:
|
30 |
+
self.query_seg.requires_grad = False
|
31 |
+
|
32 |
+
self.project = nn.Sequential(
|
33 |
+
nn.Linear(hidden_size, hidden_size),
|
34 |
+
nn.ReLU()
|
35 |
+
)
|
36 |
+
|
37 |
+
def forward(self, h, *args):
|
38 |
+
# h of shape [B, L, D]
|
39 |
+
# query_seg of shape [D, max_width]
|
40 |
+
|
41 |
+
span_rep = torch.einsum('bld, ds->blsd', h, self.query_seg)
|
42 |
+
|
43 |
+
return self.project(span_rep)
|
44 |
+
|
45 |
+
|
46 |
+
class SpanMLP(nn.Module):
|
47 |
+
|
48 |
+
def __init__(self, hidden_size, max_width):
|
49 |
+
super().__init__()
|
50 |
+
|
51 |
+
self.mlp = nn.Linear(hidden_size, hidden_size * max_width)
|
52 |
+
|
53 |
+
def forward(self, h, *args):
|
54 |
+
# h of shape [B, L, D]
|
55 |
+
# query_seg of shape [D, max_width]
|
56 |
+
|
57 |
+
B, L, D = h.size()
|
58 |
+
|
59 |
+
span_rep = self.mlp(h)
|
60 |
+
|
61 |
+
span_rep = span_rep.view(B, L, -1, D)
|
62 |
+
|
63 |
+
return span_rep.relu()
|
64 |
+
|
65 |
+
|
66 |
+
class SpanCAT(nn.Module):
|
67 |
+
|
68 |
+
def __init__(self, hidden_size, max_width):
|
69 |
+
super().__init__()
|
70 |
+
|
71 |
+
self.max_width = max_width
|
72 |
+
|
73 |
+
self.query_seg = nn.Parameter(torch.randn(128, max_width))
|
74 |
+
|
75 |
+
self.project = nn.Sequential(
|
76 |
+
nn.Linear(hidden_size + 128, hidden_size),
|
77 |
+
nn.ReLU()
|
78 |
+
)
|
79 |
+
|
80 |
+
def forward(self, h, *args):
|
81 |
+
# h of shape [B, L, D]
|
82 |
+
# query_seg of shape [D, max_width]
|
83 |
+
|
84 |
+
B, L, D = h.size()
|
85 |
+
|
86 |
+
h = h.view(B, L, 1, D).repeat(1, 1, self.max_width, 1)
|
87 |
+
|
88 |
+
q = self.query_seg.view(1, 1, self.max_width, -1).repeat(B, L, 1, 1)
|
89 |
+
|
90 |
+
span_rep = torch.cat([h, q], dim=-1)
|
91 |
+
|
92 |
+
span_rep = self.project(span_rep)
|
93 |
+
|
94 |
+
return span_rep
|
95 |
+
|
96 |
+
|
97 |
+
class SpanConvBlock(nn.Module):
|
98 |
+
def __init__(self, hidden_size, kernel_size, span_mode='conv_normal'):
|
99 |
+
super().__init__()
|
100 |
+
|
101 |
+
if span_mode == 'conv_conv':
|
102 |
+
self.conv = nn.Conv1d(hidden_size, hidden_size,
|
103 |
+
kernel_size=kernel_size)
|
104 |
+
|
105 |
+
# initialize the weights
|
106 |
+
nn.init.kaiming_uniform_(self.conv.weight, nonlinearity='relu')
|
107 |
+
|
108 |
+
elif span_mode == 'conv_max':
|
109 |
+
self.conv = nn.MaxPool1d(kernel_size=kernel_size, stride=1)
|
110 |
+
elif span_mode == 'conv_mean' or span_mode == 'conv_sum':
|
111 |
+
self.conv = nn.AvgPool1d(kernel_size=kernel_size, stride=1)
|
112 |
+
|
113 |
+
self.span_mode = span_mode
|
114 |
+
|
115 |
+
self.pad = kernel_size - 1
|
116 |
+
|
117 |
+
def forward(self, x):
|
118 |
+
|
119 |
+
x = torch.einsum('bld->bdl', x)
|
120 |
+
|
121 |
+
if self.pad > 0:
|
122 |
+
x = F.pad(x, (0, self.pad), "constant", 0)
|
123 |
+
|
124 |
+
x = self.conv(x)
|
125 |
+
|
126 |
+
if self.span_mode == "conv_sum":
|
127 |
+
x = x * (self.pad + 1)
|
128 |
+
|
129 |
+
return torch.einsum('bdl->bld', x)
|
130 |
+
|
131 |
+
|
132 |
+
class SpanConv(nn.Module):
|
133 |
+
def __init__(self, hidden_size, max_width, span_mode):
|
134 |
+
super().__init__()
|
135 |
+
|
136 |
+
kernels = [i + 2 for i in range(max_width - 1)]
|
137 |
+
|
138 |
+
self.convs = nn.ModuleList()
|
139 |
+
|
140 |
+
for kernel in kernels:
|
141 |
+
self.convs.append(SpanConvBlock(hidden_size, kernel, span_mode))
|
142 |
+
|
143 |
+
self.project = nn.Sequential(
|
144 |
+
nn.ReLU(),
|
145 |
+
nn.Linear(hidden_size, hidden_size)
|
146 |
+
)
|
147 |
+
|
148 |
+
def forward(self, x, *args):
|
149 |
+
|
150 |
+
span_reps = [x]
|
151 |
+
|
152 |
+
for conv in self.convs:
|
153 |
+
h = conv(x)
|
154 |
+
span_reps.append(h)
|
155 |
+
|
156 |
+
span_reps = torch.stack(span_reps, dim=-2)
|
157 |
+
|
158 |
+
return self.project(span_reps)
|
159 |
+
|
160 |
+
|
161 |
+
class SpanEndpointsBlock(nn.Module):
|
162 |
+
def __init__(self, kernel_size):
|
163 |
+
super().__init__()
|
164 |
+
|
165 |
+
self.kernel_size = kernel_size
|
166 |
+
|
167 |
+
def forward(self, x):
|
168 |
+
B, L, D = x.size()
|
169 |
+
|
170 |
+
span_idx = torch.LongTensor(
|
171 |
+
[[i, i + self.kernel_size - 1] for i in range(L)]).to(x.device)
|
172 |
+
|
173 |
+
x = F.pad(x, (0, 0, 0, self.kernel_size - 1), "constant", 0)
|
174 |
+
|
175 |
+
# endrep
|
176 |
+
start_end_rep = torch.index_select(x, dim=1, index=span_idx.view(-1))
|
177 |
+
|
178 |
+
start_end_rep = start_end_rep.view(B, L, 2, D)
|
179 |
+
|
180 |
+
return start_end_rep
|
181 |
+
|
182 |
+
|
183 |
+
class ConvShare(nn.Module):
|
184 |
+
def __init__(self, hidden_size, max_width):
|
185 |
+
super().__init__()
|
186 |
+
|
187 |
+
self.max_width = max_width
|
188 |
+
|
189 |
+
self.conv_weigth = nn.Parameter(
|
190 |
+
torch.randn(hidden_size, hidden_size, max_width))
|
191 |
+
|
192 |
+
nn.init.kaiming_uniform_(self.conv_weigth, nonlinearity='relu')
|
193 |
+
|
194 |
+
self.project = nn.Sequential(
|
195 |
+
nn.ReLU(),
|
196 |
+
nn.Linear(hidden_size, hidden_size)
|
197 |
+
)
|
198 |
+
|
199 |
+
def forward(self, x, *args):
|
200 |
+
span_reps = []
|
201 |
+
|
202 |
+
x = torch.einsum('bld->bdl', x)
|
203 |
+
|
204 |
+
for i in range(self.max_width):
|
205 |
+
pad = i
|
206 |
+
x_i = F.pad(x, (0, pad), "constant", 0)
|
207 |
+
conv_w = self.conv_weigth[:, :, :i + 1]
|
208 |
+
out_i = F.conv1d(x_i, conv_w)
|
209 |
+
span_reps.append(out_i.transpose(-1, -2))
|
210 |
+
|
211 |
+
out = torch.stack(span_reps, dim=-2)
|
212 |
+
|
213 |
+
return self.project(out)
|
214 |
+
|
215 |
+
|
216 |
+
def extract_elements(sequence, indices):
|
217 |
+
B, L, D = sequence.shape
|
218 |
+
K = indices.shape[1]
|
219 |
+
|
220 |
+
# Expand indices to [B, K, D]
|
221 |
+
expanded_indices = indices.unsqueeze(2).expand(-1, -1, D)
|
222 |
+
|
223 |
+
# Gather the elements
|
224 |
+
extracted_elements = torch.gather(sequence, 1, expanded_indices)
|
225 |
+
|
226 |
+
return extracted_elements
|
227 |
+
|
228 |
+
|
229 |
+
class SpanMarker(nn.Module):
|
230 |
+
|
231 |
+
def __init__(self, hidden_size, max_width, dropout=0.4):
|
232 |
+
super().__init__()
|
233 |
+
|
234 |
+
self.max_width = max_width
|
235 |
+
|
236 |
+
self.project_start = nn.Sequential(
|
237 |
+
nn.Linear(hidden_size, hidden_size * 2, bias=True),
|
238 |
+
nn.ReLU(),
|
239 |
+
nn.Dropout(dropout),
|
240 |
+
nn.Linear(hidden_size * 2, hidden_size, bias=True),
|
241 |
+
)
|
242 |
+
|
243 |
+
self.project_end = nn.Sequential(
|
244 |
+
nn.Linear(hidden_size, hidden_size * 2, bias=True),
|
245 |
+
nn.ReLU(),
|
246 |
+
nn.Dropout(dropout),
|
247 |
+
nn.Linear(hidden_size * 2, hidden_size, bias=True),
|
248 |
+
)
|
249 |
+
|
250 |
+
self.out_project = nn.Linear(hidden_size * 2, hidden_size, bias=True)
|
251 |
+
|
252 |
+
def forward(self, h, span_idx):
|
253 |
+
# h of shape [B, L, D]
|
254 |
+
# query_seg of shape [D, max_width]
|
255 |
+
|
256 |
+
B, L, D = h.size()
|
257 |
+
|
258 |
+
# project start and end
|
259 |
+
start_rep = self.project_start(h)
|
260 |
+
end_rep = self.project_end(h)
|
261 |
+
|
262 |
+
start_span_rep = extract_elements(start_rep, span_idx[:, :, 0])
|
263 |
+
end_span_rep = extract_elements(end_rep, span_idx[:, :, 1])
|
264 |
+
|
265 |
+
# concat start and end
|
266 |
+
cat = torch.cat([start_span_rep, end_span_rep], dim=-1).relu()
|
267 |
+
|
268 |
+
# project
|
269 |
+
cat = self.out_project(cat)
|
270 |
+
|
271 |
+
# reshape
|
272 |
+
return cat.view(B, L, self.max_width, D)
|
273 |
+
|
274 |
+
|
275 |
+
class SpanMarkerV0(nn.Module):
|
276 |
+
"""
|
277 |
+
Marks and projects span endpoints using an MLP.
|
278 |
+
"""
|
279 |
+
|
280 |
+
def __init__(self, hidden_size: int, max_width: int, dropout: float = 0.4):
|
281 |
+
super().__init__()
|
282 |
+
self.max_width = max_width
|
283 |
+
self.project_start = create_projection_layer(hidden_size, dropout)
|
284 |
+
self.project_end = create_projection_layer(hidden_size, dropout)
|
285 |
+
|
286 |
+
self.out_project = create_projection_layer(hidden_size * 2, dropout, hidden_size)
|
287 |
+
|
288 |
+
def forward(self, h: torch.Tensor, span_idx: torch.Tensor) -> torch.Tensor:
|
289 |
+
B, L, D = h.size()
|
290 |
+
|
291 |
+
start_rep = self.project_start(h)
|
292 |
+
end_rep = self.project_end(h)
|
293 |
+
|
294 |
+
start_span_rep = extract_elements(start_rep, span_idx[:, :, 0])
|
295 |
+
end_span_rep = extract_elements(end_rep, span_idx[:, :, 1])
|
296 |
+
|
297 |
+
cat = torch.cat([start_span_rep, end_span_rep], dim=-1).relu()
|
298 |
+
|
299 |
+
return self.out_project(cat).view(B, L, self.max_width, D)
|
300 |
+
|
301 |
+
|
302 |
+
class ConvShareV2(nn.Module):
|
303 |
+
def __init__(self, hidden_size, max_width):
|
304 |
+
super().__init__()
|
305 |
+
|
306 |
+
self.max_width = max_width
|
307 |
+
|
308 |
+
self.conv_weigth = nn.Parameter(
|
309 |
+
torch.randn(hidden_size, hidden_size, max_width)
|
310 |
+
)
|
311 |
+
|
312 |
+
nn.init.xavier_normal_(self.conv_weigth)
|
313 |
+
|
314 |
+
def forward(self, x, *args):
|
315 |
+
span_reps = []
|
316 |
+
|
317 |
+
x = torch.einsum('bld->bdl', x)
|
318 |
+
|
319 |
+
for i in range(self.max_width):
|
320 |
+
pad = i
|
321 |
+
x_i = F.pad(x, (0, pad), "constant", 0)
|
322 |
+
conv_w = self.conv_weigth[:, :, :i + 1]
|
323 |
+
out_i = F.conv1d(x_i, conv_w)
|
324 |
+
span_reps.append(out_i.transpose(-1, -2))
|
325 |
+
|
326 |
+
out = torch.stack(span_reps, dim=-2)
|
327 |
+
|
328 |
+
return out
|
329 |
+
|
330 |
+
|
331 |
+
class SpanRepLayer(nn.Module):
|
332 |
+
"""
|
333 |
+
Various span representation approaches
|
334 |
+
"""
|
335 |
+
|
336 |
+
def __init__(self, hidden_size, max_width, span_mode, **kwargs):
|
337 |
+
super().__init__()
|
338 |
+
|
339 |
+
if span_mode == 'marker':
|
340 |
+
self.span_rep_layer = SpanMarker(hidden_size, max_width, **kwargs)
|
341 |
+
elif span_mode == 'markerV0':
|
342 |
+
self.span_rep_layer = SpanMarkerV0(hidden_size, max_width, **kwargs)
|
343 |
+
elif span_mode == 'query':
|
344 |
+
self.span_rep_layer = SpanQuery(
|
345 |
+
hidden_size, max_width, trainable=True)
|
346 |
+
elif span_mode == 'mlp':
|
347 |
+
self.span_rep_layer = SpanMLP(hidden_size, max_width)
|
348 |
+
elif span_mode == 'cat':
|
349 |
+
self.span_rep_layer = SpanCAT(hidden_size, max_width)
|
350 |
+
elif span_mode == 'conv_conv':
|
351 |
+
self.span_rep_layer = SpanConv(
|
352 |
+
hidden_size, max_width, span_mode='conv_conv')
|
353 |
+
elif span_mode == 'conv_max':
|
354 |
+
self.span_rep_layer = SpanConv(
|
355 |
+
hidden_size, max_width, span_mode='conv_max')
|
356 |
+
elif span_mode == 'conv_mean':
|
357 |
+
self.span_rep_layer = SpanConv(
|
358 |
+
hidden_size, max_width, span_mode='conv_mean')
|
359 |
+
elif span_mode == 'conv_sum':
|
360 |
+
self.span_rep_layer = SpanConv(
|
361 |
+
hidden_size, max_width, span_mode='conv_sum')
|
362 |
+
elif span_mode == 'conv_share':
|
363 |
+
self.span_rep_layer = ConvShare(hidden_size, max_width)
|
364 |
+
else:
|
365 |
+
raise ValueError(f'Unknown span mode {span_mode}')
|
366 |
+
|
367 |
+
def forward(self, x, *args):
|
368 |
+
|
369 |
+
return self.span_rep_layer(x, *args)
|
backup/modules/token_rep.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from flair.data import Sentence
|
5 |
+
from flair.embeddings import TransformerWordEmbeddings
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn.utils.rnn import pad_sequence
|
8 |
+
|
9 |
+
|
10 |
+
# flair.cache_root = '/gpfswork/rech/pds/upa43yu/.cache'
|
11 |
+
|
12 |
+
|
13 |
+
class TokenRepLayer(nn.Module):
|
14 |
+
def __init__(self, model_name: str = "bert-base-cased", fine_tune: bool = True, subtoken_pooling: str = "first",
|
15 |
+
hidden_size: int = 768,
|
16 |
+
add_tokens=["[SEP]", "[ENT]"]
|
17 |
+
):
|
18 |
+
super().__init__()
|
19 |
+
|
20 |
+
self.bert_layer = TransformerWordEmbeddings(
|
21 |
+
model_name,
|
22 |
+
fine_tune=fine_tune,
|
23 |
+
subtoken_pooling=subtoken_pooling,
|
24 |
+
allow_long_sentences=True
|
25 |
+
)
|
26 |
+
|
27 |
+
# add tokens to vocabulary
|
28 |
+
self.bert_layer.tokenizer.add_tokens(add_tokens)
|
29 |
+
|
30 |
+
# resize token embeddings
|
31 |
+
self.bert_layer.model.resize_token_embeddings(len(self.bert_layer.tokenizer))
|
32 |
+
|
33 |
+
bert_hidden_size = self.bert_layer.embedding_length
|
34 |
+
|
35 |
+
if hidden_size != bert_hidden_size:
|
36 |
+
self.projection = nn.Linear(bert_hidden_size, hidden_size)
|
37 |
+
|
38 |
+
def forward(self, tokens: List[List[str]], lengths: torch.Tensor):
|
39 |
+
token_embeddings = self.compute_word_embedding(tokens)
|
40 |
+
|
41 |
+
if hasattr(self, "projection"):
|
42 |
+
token_embeddings = self.projection(token_embeddings)
|
43 |
+
|
44 |
+
B = len(lengths)
|
45 |
+
max_length = lengths.max()
|
46 |
+
mask = (torch.arange(max_length).view(1, -1).repeat(B, 1) < lengths.cpu().unsqueeze(1)).to(
|
47 |
+
token_embeddings.device).long()
|
48 |
+
return {"embeddings": token_embeddings, "mask": mask}
|
49 |
+
|
50 |
+
def compute_word_embedding(self, tokens):
|
51 |
+
sentences = [Sentence(i) for i in tokens]
|
52 |
+
self.bert_layer.embed(sentences)
|
53 |
+
token_embeddings = pad_sequence([torch.stack([t.embedding for t in k]) for k in sentences], batch_first=True)
|
54 |
+
return token_embeddings
|