Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,098 Bytes
3b2b77a da92c10 3b2b77a 6fe0b16 da92c10 3b2b77a 6fe0b16 3b2b77a 6fe0b16 3b2b77a 6fe0b16 3b2b77a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import sys
sys.path.append("./")
import gradio as gr
import spaces
import torch
from ip_adapter.utils import BLOCKS as BLOCKS
import numpy as np
import random
from diffusers import (
AutoencoderKL,
StableDiffusionXLPipeline,
)
from ip_adapter import StyleStudio_Adapter
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
import os
os.system("git lfs install")
os.system("git clone https://huggingface.co/h94/IP-Adapter")
os.system("mv IP-Adapter/sdxl_models sdxl_models")
from huggingface_hub import hf_hub_download
# hf_hub_download(repo_id="h94/IP-Adapter", filename="sdxl_models/image_encoder", local_dir="./sdxl_models/image_encoder")
hf_hub_download(repo_id="InstantX/CSGO", filename="csgo_4_32.bin", local_dir="./CSGO/")
os.system('rm -rf IP-Adapter/models')
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
image_encoder_path = "sdxl_models/image_encoder"
csgo_ckpt ='./CSGO/csgo_4_32.bin'
pretrained_vae_name_or_path ='madebyollin/sdxl-vae-fp16-fix'
weight_dtype = torch.float16
vae = AutoencoderKL.from_pretrained(pretrained_vae_name_or_path,torch_dtype=torch.float16)
pipe = StableDiffusionXLPipeline.from_pretrained(
base_model_path,
torch_dtype=torch.float16,
add_watermarker=False,
vae=vae
)
pipe.enable_vae_tiling()
target_style_blocks = BLOCKS['style']
csgo = StyleStudio_Adapter(
pipe, image_encoder_path, csgo_ckpt, device, num_style_tokens=32,
target_style_blocks=target_style_blocks,
controlnet_adapter=False,
style_model_resampler=True,
fuSAttn=True,
end_fusion=20,
adainIP=True,
)
MAX_SEED = np.iinfo(np.int32).max
def get_example():
case = [
[
'./assets/style1.jpg',
"Text-Driven Style Synthesis",
"A red apple",
7.0,
42,
20,
],
]
return case
def run_for_examples(style_image_pil, target, prompt, guidance_scale, seed, end_fusion):
return create_image(
style_image_pil=style_image_pil,
prompt=prompt,
guidance_scale=7.0,
num_inference_steps=50,
seed=42,
end_fusion=end_fusion,
use_SAttn=True,
crossModalAdaIN=True,
)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@spaces.GPU
def create_image(
style_image_pil,
prompt,
guidance_scale,
num_inference_steps,
end_fusion,
crossModalAdaIN,
use_SAttn,
seed,
neg_prompt="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
):
style_image = style_image_pil
generator = torch.Generator(device).manual_seed(seed)
init_latents = torch.randn((1, 4, 128, 128), generator=generator, device="cuda", dtype=torch.float16)
num_sample=1
if use_SAttn:
num_sample=2
init_latents = init_latents.repeat(num_sample, 1, 1, 1)
with torch.no_grad():
images = csgo.generate(pil_style_image=style_image,
prompt=prompt,
negative_prompt=neg_prompt,
height=1024,
width=1024,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
num_samples=num_sample,
num_inference_steps=num_inference_steps,
end_fusion=end_fusion,
cross_modal_adain=crossModalAdaIN,
use_SAttn=use_SAttn,
generator=generator,
)
if use_SAttn:
return [images[1]]
else:
return [images[0]]
# Description
title = r"""
<h1 align="center">StyleStudio: Text-Driven Style Transfer with Selective Control of Style Elements</h1>
"""
description = r"""
<b>Official π€ Gradio demo</b> for <a href='https://github.com/MingKunLei/StyleStudio' target='_blank'><b>StyleStudio: Text-Driven Style Transfer with Selective Control of Style Elements</b></a>.<br>
How to use:<br>
1. Upload a style image.
2. <b>Enter your desired prompt<b>.
3. Click the <b>Submit</b> button to begin customization.
4. Share your stylized photo with your friends and enjoy! π
Advanced usage:<br>
1. Click advanced options.
2. Choose different guidance and steps.
3. Set the timing for the Teacher Model's participation
"""
article = r"""
---
π **Tips**
As the value of end_fusion increases, the style gradually diminishes.
---
π **Citation**
<br>
If our work is helpful for your research or applications, please cite us via:
```bibtex
```
π§ **Contact**
<br>
If you have any questions, please feel free to open an issue or directly reach us out at <b>leimingkun@westlake.edu.cn</b>.
"""
block = gr.Blocks(css="footer {visibility: hidden}").queue(max_size=10, api_open=False)
with block:
gr.Markdown(title)
gr.Markdown(description)
with gr.Tabs():
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
style_image_pil = gr.Image(label="Style Image", type='pil')
target = gr.Radio(["Text-Driven Style Synthesis"],
value="Text-Driven Style Synthesis",
label="task")
prompt = gr.Textbox(label="Prompt",
value="A red apple")
neg_prompt = gr.Textbox(label="Negative Prompt",
value="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry")
with gr.Accordion(open=True, label="Advanced Options"):
guidance_scale = gr.Slider(minimum=1, maximum=15.0, step=0.01, value=7.0, label="guidance scale")
num_inference_steps = gr.Slider(minimum=5, maximum=100.0, step=1.0, value=50,
label="num inference steps")
end_fusion = gr.Slider(minimum=0, maximum=num_inference_steps, step=1.0, value=20.0, label="end fusion")
seed = gr.Slider(minimum=-1000000, maximum=1000000, value=1, step=1, label="Seed Value")
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
crossModalAdaIN = gr.Checkbox(label="Cross Modal AdaIN", value=True)
use_SAttn = gr.Checkbox(label="Teacher Model", value=True)
generate_button = gr.Button("Generate Image")
with gr.Column():
generated_image = gr.Gallery(label="Generated Image")
generate_button.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=create_image,
inputs=[
style_image_pil,
prompt,
guidance_scale,
num_inference_steps,
end_fusion,
crossModalAdaIN,
use_SAttn,
seed,
neg_prompt,],
outputs=[generated_image])
gr.Examples(
examples=get_example(),
inputs=[style_image_pil, target, prompt, guidance_scale, seed, end_fusion],
fn=run_for_examples,
outputs=[generated_image],
cache_examples=False,
)
gr.Markdown(article)
block.launch()
|