StyleStudio / ip_adapter /attention_processor.py
Leimingkun's picture
stylestudio
3b2b77a
raw
history blame
68.6 kB
# modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.fft as fft
import pdb
class AttnProcessor(nn.Module):
r"""
Default processor for performing attention-related computations.
"""
def __init__(
self,
hidden_size=None,
cross_attention_dim=None,
save_in_unet='down',
atten_control=None,
):
super().__init__()
self.atten_control = atten_control
self.save_in_unet = save_in_unet
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class IPAttnProcessor(nn.Module):
r"""
Attention processor for IP-Adapater.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
scale (`float`, defaults to 1.0):
the weight scale of image prompt.
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
The context length of the image features.
"""
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4, skip=False,save_in_unet='down', atten_control=None):
super().__init__()
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.scale = scale
self.num_tokens = num_tokens
self.skip = skip
self.atten_control = atten_control
self.save_in_unet = save_in_unet
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
else:
# get encoder_hidden_states, ip_hidden_states
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
encoder_hidden_states, ip_hidden_states = (
encoder_hidden_states[:, :end_pos, :],
encoder_hidden_states[:, end_pos:, :],
)
if attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
if not self.skip:
# for ip-adapter
ip_key = self.to_k_ip(ip_hidden_states)
ip_value = self.to_v_ip(ip_hidden_states)
ip_key = attn.head_to_batch_dim(ip_key)
ip_value = attn.head_to_batch_dim(ip_value)
ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
self.attn_map = ip_attention_probs
ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
hidden_states = hidden_states + self.scale * ip_hidden_states
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class AttnProcessor2_0(torch.nn.Module):
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def __init__(
self,
hidden_size=None,
cross_attention_dim=None,
save_in_unet='down',
atten_control=None,
):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.atten_control = atten_control
self.save_in_unet = save_in_unet
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class IPAttnProcessor2_0(torch.nn.Module):
r"""
Attention processor for IP-Adapater for PyTorch 2.0.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
scale (`float`, defaults to 1.0):
the weight scale of image prompt.
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
The context length of the image features.
"""
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4, skip=False,save_in_unet='down', atten_control=None):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.scale = scale
self.num_tokens = num_tokens
self.skip = skip
self.atten_control = atten_control
self.save_in_unet = save_in_unet
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
else:
# get encoder_hidden_states, ip_hidden_states
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
encoder_hidden_states, ip_hidden_states = (
encoder_hidden_states[:, :end_pos, :],
encoder_hidden_states[:, end_pos:, :],
)
if attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
if not self.skip:
# for ip-adapter
ip_key = self.to_k_ip(ip_hidden_states)
ip_value = self.to_v_ip(ip_hidden_states)
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
ip_hidden_states = F.scaled_dot_product_attention(
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
with torch.no_grad():
self.attn_map = query @ ip_key.transpose(-2, -1).softmax(dim=-1)
#print(self.attn_map.shape)
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
ip_hidden_states = ip_hidden_states.to(query.dtype)
hidden_states = hidden_states + self.scale * ip_hidden_states
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class IP_CS_AttnProcessor2_0(torch.nn.Module):
r"""
Attention processor for IP-Adapater for PyTorch 2.0.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
scale (`float`, defaults to 1.0):
the weight scale of image prompt.
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
The context length of the image features.
"""
def __init__(self, hidden_size, cross_attention_dim=None, content_scale=1.0,style_scale=1.0, num_content_tokens=4,num_style_tokens=4,
skip=False,content=False, style=False):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.content_scale = content_scale
self.style_scale = style_scale
self.num_content_tokens = num_content_tokens
self.num_style_tokens = num_style_tokens
self.skip = skip
self.content = content
self.style = style
if self.content or self.style:
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.to_k_ip_content =None
self.to_v_ip_content =None
def set_content_ipa(self,content_scale=1.0):
self.to_k_ip_content = nn.Linear(self.cross_attention_dim or self.hidden_size, self.hidden_size, bias=False)
self.to_v_ip_content = nn.Linear(self.cross_attention_dim or self.hidden_size, self.hidden_size, bias=False)
self.content_scale=content_scale
self.content =True
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
else:
# get encoder_hidden_states, ip_hidden_states
end_pos = encoder_hidden_states.shape[1] - self.num_content_tokens-self.num_style_tokens
encoder_hidden_states, ip_content_hidden_states,ip_style_hidden_states = (
encoder_hidden_states[:, :end_pos, :],
encoder_hidden_states[:, end_pos:end_pos + self.num_content_tokens, :],
encoder_hidden_states[:, end_pos + self.num_content_tokens:, :],
)
if attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
if self.content is True:
exit()
if not self.skip and self.content is True:
# print('content#####################################################')
# for ip-content-adapter
if self.to_k_ip_content is None:
ip_content_key = self.to_k_ip(ip_content_hidden_states)
ip_content_value = self.to_v_ip(ip_content_hidden_states)
else:
ip_content_key = self.to_k_ip_content(ip_content_hidden_states)
ip_content_value = self.to_v_ip_content(ip_content_hidden_states)
ip_content_key = ip_content_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_content_value = ip_content_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
ip_content_hidden_states = F.scaled_dot_product_attention(
query, ip_content_key, ip_content_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
ip_content_hidden_states = ip_content_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
ip_content_hidden_states = ip_content_hidden_states.to(query.dtype)
hidden_states = hidden_states + self.content_scale * ip_content_hidden_states
if not self.skip and self.style is True:
# for ip-style-adapter
ip_style_key = self.to_k_ip(ip_style_hidden_states)
ip_style_value = self.to_v_ip(ip_style_hidden_states)
ip_style_key = ip_style_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_style_value = ip_style_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
ip_style_hidden_states = F.scaled_dot_product_attention(
query, ip_style_key, ip_style_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
ip_style_hidden_states = ip_style_hidden_states.transpose(1, 2).reshape(batch_size, -1,
attn.heads * head_dim)
ip_style_hidden_states = ip_style_hidden_states.to(query.dtype)
hidden_states = hidden_states + self.style_scale * ip_style_hidden_states
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
## for controlnet
class CNAttnProcessor:
r"""
Default processor for performing attention-related computations.
"""
def __init__(self, num_tokens=4,save_in_unet='down',atten_control=None):
self.num_tokens = num_tokens
self.atten_control = atten_control
self.save_in_unet = save_in_unet
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
else:
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
if attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class CNAttnProcessor2_0:
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def __init__(self, num_tokens=4, save_in_unet='down', atten_control=None):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.num_tokens = num_tokens
self.atten_control = atten_control
self.save_in_unet = save_in_unet
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
else:
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
if attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class IP_FuAd_AttnProcessor2_0(torch.nn.Module):
r"""
Attention processor for IP-Adapater for PyTorch 2.0.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
scale (`float`, defaults to 1.0):
the weight scale of image prompt.
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
The context length of the image features.
"""
def __init__(self, hidden_size, cross_attention_dim=None, content_scale=1.0,style_scale=1.0, num_content_tokens=4,num_style_tokens=4,
skip=False,content=False, style=False, fuAttn=False, fuIPAttn=False, adainIP=False,
fuScale=0, end_fusion=0, attn_name=None):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.content_scale = content_scale
self.style_scale = style_scale
self.num_style_tokens = num_style_tokens
self.skip = skip
self.content = content
self.style = style
self.fuAttn = fuAttn
self.fuIPAttn = fuIPAttn
self.adainIP = adainIP
self.fuScale = fuScale
self.denoise_step = 0
self.end_fusion = end_fusion
self.name = attn_name
if self.content or self.style:
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.to_k_ip_content =None
self.to_v_ip_content =None
# def set_content_ipa(self,content_scale=1.0):
# self.to_k_ip_content = nn.Linear(self.cross_attention_dim or self.hidden_size, self.hidden_size, bias=False)
# self.to_v_ip_content = nn.Linear(self.cross_attention_dim or self.hidden_size, self.hidden_size, bias=False)
# self.content_scale=content_scale
# self.content =True
def reset_denoise_step(self):
if self.denoise_step == 50:
self.denoise_step = 0
# if "up_blocks.0.attentions.1.transformer_blocks.0.attn2" in self.name:
# print("attn2 reset successful")
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
self.denoise_step += 1
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
else:
# get encoder_hidden_states, ip_hidden_states
end_pos = encoder_hidden_states.shape[1] -self.num_style_tokens
encoder_hidden_states, ip_style_hidden_states = (
encoder_hidden_states[:, :end_pos, :],
encoder_hidden_states[:, end_pos:, :],
)
if attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
# # modified the attnMap of the Stylization Image
if self.fuAttn and self.denoise_step <= self.end_fusion:
assert query.shape[0] == 4
scale_factor = 1 / math.sqrt(torch.tensor(head_dim, dtype=query.dtype))
text_attn_probs = (torch.matmul(query, key.transpose(-2, -1)) * scale_factor).softmax(dim=-1)
text_attn_probs[1] = self.fuScale*text_attn_probs[1] + (1-self.fuScale)*text_attn_probs[0]
text_attn_probs[3] = self.fuScale*text_attn_probs[3] + (1-self.fuScale)*text_attn_probs[2]
hidden_states = torch.matmul(text_attn_probs, value)
else:
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
raw_hidden_states = hidden_states
if not self.skip and self.style is True:
# for ip-style-adapter
ip_style_key = self.to_k_ip(ip_style_hidden_states)
ip_style_value = self.to_v_ip(ip_style_hidden_states)
ip_style_key = ip_style_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_style_value = ip_style_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
if self.fuIPAttn and self.denoise_step <= self.end_fusion:
assert query.shape[0] == 4
if "down" in self.name:
print("wrong! coding")
exit()
scale_factor = 1 / math.sqrt(torch.tensor(head_dim, dtype=query.dtype))
ip_attn_probs = torch.matmul(query, ip_style_key.transpose(-2, -1)) * scale_factor
ip_attn_probs = F.softmax(ip_attn_probs, dim=-1)
ip_attn_probs[1] = self.fuScale*ip_attn_probs[1] + (1-self.fuScale)*ip_attn_probs[0]
ip_attn_probs[3] = self.fuScale*ip_attn_probs[3] + (1-self.fuScale)*ip_attn_probs[2]
ip_style_hidden_states = torch.matmul(ip_attn_probs, ip_style_value)
else:
ip_style_hidden_states = F.scaled_dot_product_attention(
query, ip_style_key, ip_style_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
ip_style_hidden_states = ip_style_hidden_states.transpose(1, 2).reshape(batch_size, -1,
attn.heads * head_dim)
ip_style_hidden_states = ip_style_hidden_states.to(query.dtype)
if not self.adainIP:
hidden_states = hidden_states + self.style_scale * ip_style_hidden_states
else:
# print("adain")
def adain(content, style):
content_mean = content.mean(dim=1, keepdim=True)
content_std = content.std(dim=1, keepdim=True)
style_mean = style.mean(dim=1, keepdim=True)
style_std = style.std(dim=1, keepdim=True)
normalized_content = (content - content_mean) / content_std
stylized_content = normalized_content * style_std + style_mean
return stylized_content
hidden_states = adain(content=hidden_states, style=ip_style_hidden_states)
if hidden_states.shape[0] == 4:
hidden_states[0] = raw_hidden_states[0]
hidden_states[2] = raw_hidden_states[2]
# hidden_states = raw_hidden_states
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
self.reset_denoise_step()
return hidden_states
class IP_FuAd_AttnProcessor2_0_exp(torch.nn.Module):
r"""
Attention processor for IP-Adapater for PyTorch 2.0.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
scale (`float`, defaults to 1.0):
the weight scale of image prompt.
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
The context length of the image features.
"""
def __init__(self, hidden_size, cross_attention_dim=None, content_scale=1.0,style_scale=1.0, num_content_tokens=4,num_style_tokens=4,
skip=False,content=False, style=False, fuAttn=False, fuIPAttn=False, adainIP=False,
fuScale=0, end_fusion=0, attn_name=None, save_attn_map=False):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.content_scale = content_scale
self.style_scale = style_scale
self.num_style_tokens = num_style_tokens
self.skip = skip
self.content = content
self.style = style
self.fuAttn = fuAttn
self.fuIPAttn = fuIPAttn
self.adainIP = adainIP
self.fuScale = fuScale
self.denoise_step = 0
self.end_fusion = end_fusion
self.name = attn_name
self.save_attn_map = save_attn_map
if self.content or self.style:
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.to_k_ip_content =None
self.to_v_ip_content =None
# def set_content_ipa(self,content_scale=1.0):
# self.to_k_ip_content = nn.Linear(self.cross_attention_dim or self.hidden_size, self.hidden_size, bias=False)
# self.to_v_ip_content = nn.Linear(self.cross_attention_dim or self.hidden_size, self.hidden_size, bias=False)
# self.content_scale=content_scale
# self.content =True
def reset_denoise_step(self):
if self.denoise_step == 50:
self.denoise_step = 0
# if "up_blocks.0.attentions.1.transformer_blocks.0.attn2" in self.name:
# print("attn2 reset successful")
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
self.denoise_step += 1
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
else:
# get encoder_hidden_states, ip_hidden_states
end_pos = encoder_hidden_states.shape[1] - self.num_content_tokens-self.num_style_tokens
encoder_hidden_states, ip_style_hidden_states = (
encoder_hidden_states[:, :end_pos, :],
encoder_hidden_states[:, end_pos:, :],
)
if attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
## attention map
if self.save_attn_map:
attention_probs = attn.get_attention_scores(attn.head_to_batch_dim(query), attn.head_to_batch_dim(value), attention_mask)
if attention_probs is not None:
if not hasattr(attn, "attn_map"):
setattr(attn, "attn_map", {})
setattr(attn, "inference_step", 0)
else:
attn.inference_step += 1
# # maybe we need to save all the timestep
# if attn.inference_step in self.attn_map_save_steps:
attn.attn_map[attn.inference_step] = attention_probs.clone().cpu().detach()
# attn.attn_map[attn.inference_step] = attention_probs.detach()
## end of attention map
else:
print(f"{attn} didn't get the attention probs")
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
# # modified the attnMap of the Stylization Image
if self.fuAttn and self.denoise_step <= self.end_fusion:
assert query.shape[0] == 4
scale_factor = 1 / math.sqrt(torch.tensor(head_dim, dtype=query.dtype))
text_attn_probs = (torch.matmul(query, key.transpose(-2, -1)) * scale_factor).softmax(dim=-1)
text_attn_probs[1] = self.fuScale*text_attn_probs[1] + (1-self.fuScale)*text_attn_probs[0]
text_attn_probs[3] = self.fuScale*text_attn_probs[3] + (1-self.fuScale)*text_attn_probs[2]
hidden_states = torch.matmul(text_attn_probs, value)
else:
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
raw_hidden_states = hidden_states
if not self.skip and self.style is True:
# for ip-style-adapter
ip_style_key = self.to_k_ip(ip_style_hidden_states)
ip_style_value = self.to_v_ip(ip_style_hidden_states)
ip_style_key = ip_style_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_style_value = ip_style_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
if self.fuIPAttn and self.denoise_step <= self.end_fusion:
assert query.shape[0] == 4
if "down" in self.name:
print("wrong! coding")
exit()
scale_factor = 1 / math.sqrt(torch.tensor(head_dim, dtype=query.dtype))
ip_attn_probs = torch.matmul(query, ip_style_key.transpose(-2, -1)) * scale_factor
ip_attn_probs = F.softmax(ip_attn_probs, dim=-1)
ip_attn_probs[1] = self.fuScale*ip_attn_probs[1] + (1-self.fuScale)*ip_attn_probs[0]
ip_attn_probs[3] = self.fuScale*ip_attn_probs[3] + (1-self.fuScale)*ip_attn_probs[2]
ip_style_hidden_states = torch.matmul(ip_attn_probs, ip_style_value)
else:
ip_style_hidden_states = F.scaled_dot_product_attention(
query, ip_style_key, ip_style_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
ip_style_hidden_states = ip_style_hidden_states.transpose(1, 2).reshape(batch_size, -1,
attn.heads * head_dim)
ip_style_hidden_states = ip_style_hidden_states.to(query.dtype)
# if self.adainIP and self.denoise_step >= self.start_adain:
if self.adainIP:
# print("adain")
# if self.denoise_step == 1 and "up_blocks.1.attentions.2.transformer_blocks.1" in self.name:
# print("adain")
def adain(content, style):
content_mean = content.mean(dim=1, keepdim=True)
content_std = content.std(dim=1, keepdim=True)
print("exp code")
pdb.set_trace()
style_mean = style.mean(dim=1, keepdim=True)
style_std = style.std(dim=1, keepdim=True)
normalized_content = (content - content_mean) / content_std
stylized_content = normalized_content * style_std + style_mean
return stylized_content
pdb.set_trace()
hidden_states = adain(content=hidden_states, style=ip_style_hidden_states)
else:
hidden_states = hidden_states + self.style_scale * ip_style_hidden_states
if hidden_states.shape[0] == 4:
hidden_states[0] = raw_hidden_states[0]
hidden_states[2] = raw_hidden_states[2]
# hidden_states = raw_hidden_states
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
self.reset_denoise_step()
return hidden_states
class AttnProcessor2_0_hijack(torch.nn.Module):
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def __init__(
self,
hidden_size=None,
cross_attention_dim=None,
save_in_unet='down',
atten_control=None,
fuSAttn=False,
fuScale=0,
end_fusion=0,
attn_name=None,
):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.atten_control = atten_control
self.save_in_unet = save_in_unet
self.fuSAttn = fuSAttn
self.fuScale = fuScale
self.denoise_step = 0
self.end_fusion = end_fusion
self.name = attn_name
def reset_denoise_step(self):
if self.denoise_step == 50:
self.denoise_step = 0
# if "up_blocks.0.attentions.1.transformer_blocks.0.attn1" in self.name:
# print("attn1 reset successful")
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
self.denoise_step += 1
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
if self.fuSAttn and self.denoise_step <= self.end_fusion:
assert query.shape[0] == 4
if "up_blocks.1.attentions.2.transformer_blocks.1" in self.name and self.denoise_step == self.end_fusion:
print("now: ", self.denoise_step, "end now:", self.end_fusion, "scale: ", self.fuScale)
# pdb.set_trace()
scale_factor = 1 / math.sqrt(torch.tensor(head_dim, dtype=query.dtype))
attn_probs = (torch.matmul(query, key.transpose(-2, -1)) * scale_factor).softmax(dim=-1)
attn_probs[1] = self.fuScale*attn_probs[1] + (1-self.fuScale)*attn_probs[0]
attn_probs[3] = self.fuScale*attn_probs[3] + (1-self.fuScale)*attn_probs[2]
hidden_states = torch.matmul(attn_probs, value)
else:
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
if self.denoise_step == 50:
self.reset_denoise_step()
return hidden_states
class AttnProcessor2_0_exp(torch.nn.Module):
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def __init__(
self,
hidden_size=None,
cross_attention_dim=None,
save_in_unet='down',
atten_control=None,
fuSAttn=False,
fuScale=0,
end_fusion=0,
attn_name=None,
):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.atten_control = atten_control
self.save_in_unet = save_in_unet
self.fuSAttn = fuSAttn
self.fuScale = fuScale
self.denoise_step = 0
self.end_fusion = end_fusion
self.name = attn_name
def reset_denoise_step(self):
if self.denoise_step == 50:
self.denoise_step = 0
# if "up_blocks.0.attentions.1.transformer_blocks.0.attn1" in self.name:
# print("attn1 reset successful")
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
self.denoise_step += 1
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
if self.fuSAttn and self.denoise_step <= self.end_fusion:
assert query.shape[0] == 4
if "up_blocks.1.attentions.2.transformer_blocks.1" in self.name and self.denoise_step == self.end_fusion:
print("now: ", self.denoise_step, "end now:", self.end_fusion, "scale: ", self.fuScale)
# pdb.set_trace()
scale_factor = 1 / math.sqrt(torch.tensor(head_dim, dtype=query.dtype))
attn_probs = (torch.matmul(query, key.transpose(-2, -1)) * scale_factor).softmax(dim=-1)
attn_probs[1] = self.fuScale*attn_probs[1] + (1-self.fuScale)*attn_probs[0]
attn_probs[3] = self.fuScale*attn_probs[3] + (1-self.fuScale)*attn_probs[2]
print("exp code")
pdb.set_trace()
def adain(content, style):
content_mean = content.mean(dim=1, keepdim=True)
content_std = content.std(dim=1, keepdim=True)
style_mean = style.mean(dim=1, keepdim=True)
style_std = style.std(dim=1, keepdim=True)
normalized_content = (content - content_mean) / content_std
stylized_content = normalized_content * style_std + style_mean
return stylized_content
value[1] = adain(content=value[0], style=value[1])
value[3] = adain(content=value[2], style=value[3])
hidden_states = torch.matmul(attn_probs, value)
else:
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
self.reset_denoise_step()
return hidden_states
class IPAttnProcessor2_0_cross_modal(torch.nn.Module):
r"""
Attention processor for IP-Adapater for PyTorch 2.0.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
scale (`float`, defaults to 1.0):
the weight scale of image prompt.
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
The context length of the image features.
"""
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4, skip=False,
fuAttn=False, fuIPAttn=False, adainIP=False, end_fusion=0, fuScale=0, attn_name=None):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.scale = scale
self.num_tokens = num_tokens
self.skip = skip
self.fuAttn = fuAttn
self.fuIPAttn = fuIPAttn
self.adainIP = adainIP
self.denoise_step = fuScale
self.end_fusion = end_fusion
self.fuScale = fuScale
self.name = attn_name
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
def reset_denoise_step(self):
if self.denoise_step == 50:
self.denoise_step = 0
# if "up_blocks.0.attentions.1.transformer_blocks.0.attn2" in self.name:
# print("attn2 reset successful")
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
self.denoise_step += 1
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
else:
# get encoder_hidden_states, ip_hidden_states
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
encoder_hidden_states, ip_hidden_states = (
encoder_hidden_states[:, :end_pos, :],
encoder_hidden_states[:, end_pos:, :],
)
if attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
if self.fuAttn and self.denoise_step <= self.end_fusion:
assert query.shape[0] == 4
if "up_blocks.1.attentions.2.transformer_blocks.1" in self.name and self.denoise_step == self.end_fusion:
print("fuAttn")
print("now: ", self.denoise_step, "end now:", self.end_fusion, "scale: ", self.fuScale)
scale_factor = 1 / math.sqrt(torch.tensor(head_dim, dtype=query.dtype))
text_attn_probs = (torch.matmul(query, key.transpose(-2, -1)) * scale_factor).softmax(dim=-1)
text_attn_probs[1] = self.fuScale*text_attn_probs[1] + (1-self.fuScale)*text_attn_probs[0]
text_attn_probs[3] = self.fuScale*text_attn_probs[3] + (1-self.fuScale)*text_attn_probs[2]
hidden_states = torch.matmul(text_attn_probs, value)
else:
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
raw_hidden_states = hidden_states
if not self.skip:
# for ip-adapter
ip_key = self.to_k_ip(ip_hidden_states)
ip_value = self.to_v_ip(ip_hidden_states)
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
if self.fuIPAttn and self.denoise_step <= self.end_fusion:
assert query.shape[0] == 4
print("fuIPAttn")
if "down" in self.name:
print("wrong! coding")
exit()
scale_factor = 1 / math.sqrt(torch.tensor(head_dim, dtype=query.dtype))
ip_attn_probs = torch.matmul(query, ip_key.transpose(-2, -1)) * scale_factor
ip_attn_probs = F.softmax(ip_attn_probs, dim=-1)
ip_attn_probs[1] = self.fuScale*ip_attn_probs[1] + (1-self.fuScale)*ip_attn_probs[0]
ip_attn_probs[3] = self.fuScale*ip_attn_probs[3] + (1-self.fuScale)*ip_attn_probs[2]
ip_hidden_states = torch.matmul(ip_attn_probs, ip_value)
else:
ip_hidden_states = F.scaled_dot_product_attention(
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
with torch.no_grad():
self.attn_map = query @ ip_key.transpose(-2, -1).softmax(dim=-1)
#print(self.attn_map.shape)
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
ip_hidden_states = ip_hidden_states.to(query.dtype)
if self.adainIP:
def adain(content, style):
# 计算内容特征的均值和标准差
content_mean = content.mean(dim=1, keepdim=True)
content_std = content.std(dim=1, keepdim=True)
# 计算风格特征的均值和标准差
style_mean = style.mean(dim=1, keepdim=True)
style_std = style.std(dim=1, keepdim=True)
# 归一化内容特征并应用风格特征的均值和方差
normalized_content = (content - content_mean) / content_std
stylized_content = normalized_content * style_std + style_mean
return stylized_content
hidden_states = adain(content=hidden_states, style=ip_hidden_states)
else:
hidden_states = hidden_states + self.scale * ip_hidden_states
if hidden_states.shape[0] == 4:
hidden_states[0] = raw_hidden_states[0]
hidden_states[2] = raw_hidden_states[2]
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
if self.denoise_step == 50:
self.reset_denoise_step()
return hidden_states