Spaces:
Running
on
Zero
Running
on
Zero
# modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.fft as fft | |
import pdb | |
class AttnProcessor(nn.Module): | |
r""" | |
Default processor for performing attention-related computations. | |
""" | |
def __init__( | |
self, | |
hidden_size=None, | |
cross_attention_dim=None, | |
save_in_unet='down', | |
atten_control=None, | |
): | |
super().__init__() | |
self.atten_control = atten_control | |
self.save_in_unet = save_in_unet | |
def __call__( | |
self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
): | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
query = attn.head_to_batch_dim(query) | |
key = attn.head_to_batch_dim(key) | |
value = attn.head_to_batch_dim(value) | |
attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
hidden_states = torch.bmm(attention_probs, value) | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
class IPAttnProcessor(nn.Module): | |
r""" | |
Attention processor for IP-Adapater. | |
Args: | |
hidden_size (`int`): | |
The hidden size of the attention layer. | |
cross_attention_dim (`int`): | |
The number of channels in the `encoder_hidden_states`. | |
scale (`float`, defaults to 1.0): | |
the weight scale of image prompt. | |
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16): | |
The context length of the image features. | |
""" | |
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4, skip=False,save_in_unet='down', atten_control=None): | |
super().__init__() | |
self.hidden_size = hidden_size | |
self.cross_attention_dim = cross_attention_dim | |
self.scale = scale | |
self.num_tokens = num_tokens | |
self.skip = skip | |
self.atten_control = atten_control | |
self.save_in_unet = save_in_unet | |
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
def __call__( | |
self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
): | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
else: | |
# get encoder_hidden_states, ip_hidden_states | |
end_pos = encoder_hidden_states.shape[1] - self.num_tokens | |
encoder_hidden_states, ip_hidden_states = ( | |
encoder_hidden_states[:, :end_pos, :], | |
encoder_hidden_states[:, end_pos:, :], | |
) | |
if attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
query = attn.head_to_batch_dim(query) | |
key = attn.head_to_batch_dim(key) | |
value = attn.head_to_batch_dim(value) | |
attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
hidden_states = torch.bmm(attention_probs, value) | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
if not self.skip: | |
# for ip-adapter | |
ip_key = self.to_k_ip(ip_hidden_states) | |
ip_value = self.to_v_ip(ip_hidden_states) | |
ip_key = attn.head_to_batch_dim(ip_key) | |
ip_value = attn.head_to_batch_dim(ip_value) | |
ip_attention_probs = attn.get_attention_scores(query, ip_key, None) | |
self.attn_map = ip_attention_probs | |
ip_hidden_states = torch.bmm(ip_attention_probs, ip_value) | |
ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states) | |
hidden_states = hidden_states + self.scale * ip_hidden_states | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
class AttnProcessor2_0(torch.nn.Module): | |
r""" | |
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). | |
""" | |
def __init__( | |
self, | |
hidden_size=None, | |
cross_attention_dim=None, | |
save_in_unet='down', | |
atten_control=None, | |
): | |
super().__init__() | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
self.atten_control = atten_control | |
self.save_in_unet = save_in_unet | |
def __call__( | |
self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
): | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
if attention_mask is not None: | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
# scaled_dot_product_attention expects attention_mask shape to be | |
# (batch, heads, source_length, target_length) | |
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
class IPAttnProcessor2_0(torch.nn.Module): | |
r""" | |
Attention processor for IP-Adapater for PyTorch 2.0. | |
Args: | |
hidden_size (`int`): | |
The hidden size of the attention layer. | |
cross_attention_dim (`int`): | |
The number of channels in the `encoder_hidden_states`. | |
scale (`float`, defaults to 1.0): | |
the weight scale of image prompt. | |
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16): | |
The context length of the image features. | |
""" | |
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4, skip=False,save_in_unet='down', atten_control=None): | |
super().__init__() | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
self.hidden_size = hidden_size | |
self.cross_attention_dim = cross_attention_dim | |
self.scale = scale | |
self.num_tokens = num_tokens | |
self.skip = skip | |
self.atten_control = atten_control | |
self.save_in_unet = save_in_unet | |
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
def __call__( | |
self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
): | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
if attention_mask is not None: | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
# scaled_dot_product_attention expects attention_mask shape to be | |
# (batch, heads, source_length, target_length) | |
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
else: | |
# get encoder_hidden_states, ip_hidden_states | |
end_pos = encoder_hidden_states.shape[1] - self.num_tokens | |
encoder_hidden_states, ip_hidden_states = ( | |
encoder_hidden_states[:, :end_pos, :], | |
encoder_hidden_states[:, end_pos:, :], | |
) | |
if attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
if not self.skip: | |
# for ip-adapter | |
ip_key = self.to_k_ip(ip_hidden_states) | |
ip_value = self.to_v_ip(ip_hidden_states) | |
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
ip_hidden_states = F.scaled_dot_product_attention( | |
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False | |
) | |
with torch.no_grad(): | |
self.attn_map = query @ ip_key.transpose(-2, -1).softmax(dim=-1) | |
#print(self.attn_map.shape) | |
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
ip_hidden_states = ip_hidden_states.to(query.dtype) | |
hidden_states = hidden_states + self.scale * ip_hidden_states | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
class IP_CS_AttnProcessor2_0(torch.nn.Module): | |
r""" | |
Attention processor for IP-Adapater for PyTorch 2.0. | |
Args: | |
hidden_size (`int`): | |
The hidden size of the attention layer. | |
cross_attention_dim (`int`): | |
The number of channels in the `encoder_hidden_states`. | |
scale (`float`, defaults to 1.0): | |
the weight scale of image prompt. | |
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16): | |
The context length of the image features. | |
""" | |
def __init__(self, hidden_size, cross_attention_dim=None, content_scale=1.0,style_scale=1.0, num_content_tokens=4,num_style_tokens=4, | |
skip=False,content=False, style=False): | |
super().__init__() | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
self.hidden_size = hidden_size | |
self.cross_attention_dim = cross_attention_dim | |
self.content_scale = content_scale | |
self.style_scale = style_scale | |
self.num_content_tokens = num_content_tokens | |
self.num_style_tokens = num_style_tokens | |
self.skip = skip | |
self.content = content | |
self.style = style | |
if self.content or self.style: | |
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
self.to_k_ip_content =None | |
self.to_v_ip_content =None | |
def set_content_ipa(self,content_scale=1.0): | |
self.to_k_ip_content = nn.Linear(self.cross_attention_dim or self.hidden_size, self.hidden_size, bias=False) | |
self.to_v_ip_content = nn.Linear(self.cross_attention_dim or self.hidden_size, self.hidden_size, bias=False) | |
self.content_scale=content_scale | |
self.content =True | |
def __call__( | |
self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
): | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
if attention_mask is not None: | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
# scaled_dot_product_attention expects attention_mask shape to be | |
# (batch, heads, source_length, target_length) | |
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
else: | |
# get encoder_hidden_states, ip_hidden_states | |
end_pos = encoder_hidden_states.shape[1] - self.num_content_tokens-self.num_style_tokens | |
encoder_hidden_states, ip_content_hidden_states,ip_style_hidden_states = ( | |
encoder_hidden_states[:, :end_pos, :], | |
encoder_hidden_states[:, end_pos:end_pos + self.num_content_tokens, :], | |
encoder_hidden_states[:, end_pos + self.num_content_tokens:, :], | |
) | |
if attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
if self.content is True: | |
exit() | |
if not self.skip and self.content is True: | |
# print('content#####################################################') | |
# for ip-content-adapter | |
if self.to_k_ip_content is None: | |
ip_content_key = self.to_k_ip(ip_content_hidden_states) | |
ip_content_value = self.to_v_ip(ip_content_hidden_states) | |
else: | |
ip_content_key = self.to_k_ip_content(ip_content_hidden_states) | |
ip_content_value = self.to_v_ip_content(ip_content_hidden_states) | |
ip_content_key = ip_content_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
ip_content_value = ip_content_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
ip_content_hidden_states = F.scaled_dot_product_attention( | |
query, ip_content_key, ip_content_value, attn_mask=None, dropout_p=0.0, is_causal=False | |
) | |
ip_content_hidden_states = ip_content_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
ip_content_hidden_states = ip_content_hidden_states.to(query.dtype) | |
hidden_states = hidden_states + self.content_scale * ip_content_hidden_states | |
if not self.skip and self.style is True: | |
# for ip-style-adapter | |
ip_style_key = self.to_k_ip(ip_style_hidden_states) | |
ip_style_value = self.to_v_ip(ip_style_hidden_states) | |
ip_style_key = ip_style_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
ip_style_value = ip_style_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
ip_style_hidden_states = F.scaled_dot_product_attention( | |
query, ip_style_key, ip_style_value, attn_mask=None, dropout_p=0.0, is_causal=False | |
) | |
ip_style_hidden_states = ip_style_hidden_states.transpose(1, 2).reshape(batch_size, -1, | |
attn.heads * head_dim) | |
ip_style_hidden_states = ip_style_hidden_states.to(query.dtype) | |
hidden_states = hidden_states + self.style_scale * ip_style_hidden_states | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
## for controlnet | |
class CNAttnProcessor: | |
r""" | |
Default processor for performing attention-related computations. | |
""" | |
def __init__(self, num_tokens=4,save_in_unet='down',atten_control=None): | |
self.num_tokens = num_tokens | |
self.atten_control = atten_control | |
self.save_in_unet = save_in_unet | |
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None): | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
else: | |
end_pos = encoder_hidden_states.shape[1] - self.num_tokens | |
encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text | |
if attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
query = attn.head_to_batch_dim(query) | |
key = attn.head_to_batch_dim(key) | |
value = attn.head_to_batch_dim(value) | |
attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
hidden_states = torch.bmm(attention_probs, value) | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
class CNAttnProcessor2_0: | |
r""" | |
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). | |
""" | |
def __init__(self, num_tokens=4, save_in_unet='down', atten_control=None): | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
self.num_tokens = num_tokens | |
self.atten_control = atten_control | |
self.save_in_unet = save_in_unet | |
def __call__( | |
self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
): | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
if attention_mask is not None: | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
# scaled_dot_product_attention expects attention_mask shape to be | |
# (batch, heads, source_length, target_length) | |
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
else: | |
end_pos = encoder_hidden_states.shape[1] - self.num_tokens | |
encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text | |
if attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
class IP_FuAd_AttnProcessor2_0(torch.nn.Module): | |
r""" | |
Attention processor for IP-Adapater for PyTorch 2.0. | |
Args: | |
hidden_size (`int`): | |
The hidden size of the attention layer. | |
cross_attention_dim (`int`): | |
The number of channels in the `encoder_hidden_states`. | |
scale (`float`, defaults to 1.0): | |
the weight scale of image prompt. | |
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16): | |
The context length of the image features. | |
""" | |
def __init__(self, hidden_size, cross_attention_dim=None, content_scale=1.0,style_scale=1.0, num_content_tokens=4,num_style_tokens=4, | |
skip=False,content=False, style=False, fuAttn=False, fuIPAttn=False, adainIP=False, | |
fuScale=0, end_fusion=0, attn_name=None): | |
super().__init__() | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
self.hidden_size = hidden_size | |
self.cross_attention_dim = cross_attention_dim | |
self.content_scale = content_scale | |
self.style_scale = style_scale | |
self.num_style_tokens = num_style_tokens | |
self.skip = skip | |
self.content = content | |
self.style = style | |
self.fuAttn = fuAttn | |
self.fuIPAttn = fuIPAttn | |
self.adainIP = adainIP | |
self.fuScale = fuScale | |
self.denoise_step = 0 | |
self.end_fusion = end_fusion | |
self.name = attn_name | |
if self.content or self.style: | |
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
self.to_k_ip_content =None | |
self.to_v_ip_content =None | |
# def set_content_ipa(self,content_scale=1.0): | |
# self.to_k_ip_content = nn.Linear(self.cross_attention_dim or self.hidden_size, self.hidden_size, bias=False) | |
# self.to_v_ip_content = nn.Linear(self.cross_attention_dim or self.hidden_size, self.hidden_size, bias=False) | |
# self.content_scale=content_scale | |
# self.content =True | |
def reset_denoise_step(self): | |
if self.denoise_step == 50: | |
self.denoise_step = 0 | |
# if "up_blocks.0.attentions.1.transformer_blocks.0.attn2" in self.name: | |
# print("attn2 reset successful") | |
def __call__( | |
self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
): | |
self.denoise_step += 1 | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
if attention_mask is not None: | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
# scaled_dot_product_attention expects attention_mask shape to be | |
# (batch, heads, source_length, target_length) | |
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
else: | |
# get encoder_hidden_states, ip_hidden_states | |
end_pos = encoder_hidden_states.shape[1] -self.num_style_tokens | |
encoder_hidden_states, ip_style_hidden_states = ( | |
encoder_hidden_states[:, :end_pos, :], | |
encoder_hidden_states[:, end_pos:, :], | |
) | |
if attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
# # modified the attnMap of the Stylization Image | |
if self.fuAttn and self.denoise_step <= self.end_fusion: | |
assert query.shape[0] == 4 | |
scale_factor = 1 / math.sqrt(torch.tensor(head_dim, dtype=query.dtype)) | |
text_attn_probs = (torch.matmul(query, key.transpose(-2, -1)) * scale_factor).softmax(dim=-1) | |
text_attn_probs[1] = self.fuScale*text_attn_probs[1] + (1-self.fuScale)*text_attn_probs[0] | |
text_attn_probs[3] = self.fuScale*text_attn_probs[3] + (1-self.fuScale)*text_attn_probs[2] | |
hidden_states = torch.matmul(text_attn_probs, value) | |
else: | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
raw_hidden_states = hidden_states | |
if not self.skip and self.style is True: | |
# for ip-style-adapter | |
ip_style_key = self.to_k_ip(ip_style_hidden_states) | |
ip_style_value = self.to_v_ip(ip_style_hidden_states) | |
ip_style_key = ip_style_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
ip_style_value = ip_style_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
if self.fuIPAttn and self.denoise_step <= self.end_fusion: | |
assert query.shape[0] == 4 | |
if "down" in self.name: | |
print("wrong! coding") | |
exit() | |
scale_factor = 1 / math.sqrt(torch.tensor(head_dim, dtype=query.dtype)) | |
ip_attn_probs = torch.matmul(query, ip_style_key.transpose(-2, -1)) * scale_factor | |
ip_attn_probs = F.softmax(ip_attn_probs, dim=-1) | |
ip_attn_probs[1] = self.fuScale*ip_attn_probs[1] + (1-self.fuScale)*ip_attn_probs[0] | |
ip_attn_probs[3] = self.fuScale*ip_attn_probs[3] + (1-self.fuScale)*ip_attn_probs[2] | |
ip_style_hidden_states = torch.matmul(ip_attn_probs, ip_style_value) | |
else: | |
ip_style_hidden_states = F.scaled_dot_product_attention( | |
query, ip_style_key, ip_style_value, attn_mask=None, dropout_p=0.0, is_causal=False | |
) | |
ip_style_hidden_states = ip_style_hidden_states.transpose(1, 2).reshape(batch_size, -1, | |
attn.heads * head_dim) | |
ip_style_hidden_states = ip_style_hidden_states.to(query.dtype) | |
if not self.adainIP: | |
hidden_states = hidden_states + self.style_scale * ip_style_hidden_states | |
else: | |
# print("adain") | |
def adain(content, style): | |
content_mean = content.mean(dim=1, keepdim=True) | |
content_std = content.std(dim=1, keepdim=True) | |
style_mean = style.mean(dim=1, keepdim=True) | |
style_std = style.std(dim=1, keepdim=True) | |
normalized_content = (content - content_mean) / content_std | |
stylized_content = normalized_content * style_std + style_mean | |
return stylized_content | |
hidden_states = adain(content=hidden_states, style=ip_style_hidden_states) | |
if hidden_states.shape[0] == 4: | |
hidden_states[0] = raw_hidden_states[0] | |
hidden_states[2] = raw_hidden_states[2] | |
# hidden_states = raw_hidden_states | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
self.reset_denoise_step() | |
return hidden_states | |
class IP_FuAd_AttnProcessor2_0_exp(torch.nn.Module): | |
r""" | |
Attention processor for IP-Adapater for PyTorch 2.0. | |
Args: | |
hidden_size (`int`): | |
The hidden size of the attention layer. | |
cross_attention_dim (`int`): | |
The number of channels in the `encoder_hidden_states`. | |
scale (`float`, defaults to 1.0): | |
the weight scale of image prompt. | |
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16): | |
The context length of the image features. | |
""" | |
def __init__(self, hidden_size, cross_attention_dim=None, content_scale=1.0,style_scale=1.0, num_content_tokens=4,num_style_tokens=4, | |
skip=False,content=False, style=False, fuAttn=False, fuIPAttn=False, adainIP=False, | |
fuScale=0, end_fusion=0, attn_name=None, save_attn_map=False): | |
super().__init__() | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
self.hidden_size = hidden_size | |
self.cross_attention_dim = cross_attention_dim | |
self.content_scale = content_scale | |
self.style_scale = style_scale | |
self.num_style_tokens = num_style_tokens | |
self.skip = skip | |
self.content = content | |
self.style = style | |
self.fuAttn = fuAttn | |
self.fuIPAttn = fuIPAttn | |
self.adainIP = adainIP | |
self.fuScale = fuScale | |
self.denoise_step = 0 | |
self.end_fusion = end_fusion | |
self.name = attn_name | |
self.save_attn_map = save_attn_map | |
if self.content or self.style: | |
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
self.to_k_ip_content =None | |
self.to_v_ip_content =None | |
# def set_content_ipa(self,content_scale=1.0): | |
# self.to_k_ip_content = nn.Linear(self.cross_attention_dim or self.hidden_size, self.hidden_size, bias=False) | |
# self.to_v_ip_content = nn.Linear(self.cross_attention_dim or self.hidden_size, self.hidden_size, bias=False) | |
# self.content_scale=content_scale | |
# self.content =True | |
def reset_denoise_step(self): | |
if self.denoise_step == 50: | |
self.denoise_step = 0 | |
# if "up_blocks.0.attentions.1.transformer_blocks.0.attn2" in self.name: | |
# print("attn2 reset successful") | |
def __call__( | |
self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
): | |
self.denoise_step += 1 | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
if attention_mask is not None: | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
# scaled_dot_product_attention expects attention_mask shape to be | |
# (batch, heads, source_length, target_length) | |
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
else: | |
# get encoder_hidden_states, ip_hidden_states | |
end_pos = encoder_hidden_states.shape[1] - self.num_content_tokens-self.num_style_tokens | |
encoder_hidden_states, ip_style_hidden_states = ( | |
encoder_hidden_states[:, :end_pos, :], | |
encoder_hidden_states[:, end_pos:, :], | |
) | |
if attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
## attention map | |
if self.save_attn_map: | |
attention_probs = attn.get_attention_scores(attn.head_to_batch_dim(query), attn.head_to_batch_dim(value), attention_mask) | |
if attention_probs is not None: | |
if not hasattr(attn, "attn_map"): | |
setattr(attn, "attn_map", {}) | |
setattr(attn, "inference_step", 0) | |
else: | |
attn.inference_step += 1 | |
# # maybe we need to save all the timestep | |
# if attn.inference_step in self.attn_map_save_steps: | |
attn.attn_map[attn.inference_step] = attention_probs.clone().cpu().detach() | |
# attn.attn_map[attn.inference_step] = attention_probs.detach() | |
## end of attention map | |
else: | |
print(f"{attn} didn't get the attention probs") | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
# # modified the attnMap of the Stylization Image | |
if self.fuAttn and self.denoise_step <= self.end_fusion: | |
assert query.shape[0] == 4 | |
scale_factor = 1 / math.sqrt(torch.tensor(head_dim, dtype=query.dtype)) | |
text_attn_probs = (torch.matmul(query, key.transpose(-2, -1)) * scale_factor).softmax(dim=-1) | |
text_attn_probs[1] = self.fuScale*text_attn_probs[1] + (1-self.fuScale)*text_attn_probs[0] | |
text_attn_probs[3] = self.fuScale*text_attn_probs[3] + (1-self.fuScale)*text_attn_probs[2] | |
hidden_states = torch.matmul(text_attn_probs, value) | |
else: | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
raw_hidden_states = hidden_states | |
if not self.skip and self.style is True: | |
# for ip-style-adapter | |
ip_style_key = self.to_k_ip(ip_style_hidden_states) | |
ip_style_value = self.to_v_ip(ip_style_hidden_states) | |
ip_style_key = ip_style_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
ip_style_value = ip_style_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
if self.fuIPAttn and self.denoise_step <= self.end_fusion: | |
assert query.shape[0] == 4 | |
if "down" in self.name: | |
print("wrong! coding") | |
exit() | |
scale_factor = 1 / math.sqrt(torch.tensor(head_dim, dtype=query.dtype)) | |
ip_attn_probs = torch.matmul(query, ip_style_key.transpose(-2, -1)) * scale_factor | |
ip_attn_probs = F.softmax(ip_attn_probs, dim=-1) | |
ip_attn_probs[1] = self.fuScale*ip_attn_probs[1] + (1-self.fuScale)*ip_attn_probs[0] | |
ip_attn_probs[3] = self.fuScale*ip_attn_probs[3] + (1-self.fuScale)*ip_attn_probs[2] | |
ip_style_hidden_states = torch.matmul(ip_attn_probs, ip_style_value) | |
else: | |
ip_style_hidden_states = F.scaled_dot_product_attention( | |
query, ip_style_key, ip_style_value, attn_mask=None, dropout_p=0.0, is_causal=False | |
) | |
ip_style_hidden_states = ip_style_hidden_states.transpose(1, 2).reshape(batch_size, -1, | |
attn.heads * head_dim) | |
ip_style_hidden_states = ip_style_hidden_states.to(query.dtype) | |
# if self.adainIP and self.denoise_step >= self.start_adain: | |
if self.adainIP: | |
# print("adain") | |
# if self.denoise_step == 1 and "up_blocks.1.attentions.2.transformer_blocks.1" in self.name: | |
# print("adain") | |
def adain(content, style): | |
content_mean = content.mean(dim=1, keepdim=True) | |
content_std = content.std(dim=1, keepdim=True) | |
print("exp code") | |
pdb.set_trace() | |
style_mean = style.mean(dim=1, keepdim=True) | |
style_std = style.std(dim=1, keepdim=True) | |
normalized_content = (content - content_mean) / content_std | |
stylized_content = normalized_content * style_std + style_mean | |
return stylized_content | |
pdb.set_trace() | |
hidden_states = adain(content=hidden_states, style=ip_style_hidden_states) | |
else: | |
hidden_states = hidden_states + self.style_scale * ip_style_hidden_states | |
if hidden_states.shape[0] == 4: | |
hidden_states[0] = raw_hidden_states[0] | |
hidden_states[2] = raw_hidden_states[2] | |
# hidden_states = raw_hidden_states | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
self.reset_denoise_step() | |
return hidden_states | |
class AttnProcessor2_0_hijack(torch.nn.Module): | |
r""" | |
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). | |
""" | |
def __init__( | |
self, | |
hidden_size=None, | |
cross_attention_dim=None, | |
save_in_unet='down', | |
atten_control=None, | |
fuSAttn=False, | |
fuScale=0, | |
end_fusion=0, | |
attn_name=None, | |
): | |
super().__init__() | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
self.atten_control = atten_control | |
self.save_in_unet = save_in_unet | |
self.fuSAttn = fuSAttn | |
self.fuScale = fuScale | |
self.denoise_step = 0 | |
self.end_fusion = end_fusion | |
self.name = attn_name | |
def reset_denoise_step(self): | |
if self.denoise_step == 50: | |
self.denoise_step = 0 | |
# if "up_blocks.0.attentions.1.transformer_blocks.0.attn1" in self.name: | |
# print("attn1 reset successful") | |
def __call__( | |
self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
): | |
self.denoise_step += 1 | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
if attention_mask is not None: | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
# scaled_dot_product_attention expects attention_mask shape to be | |
# (batch, heads, source_length, target_length) | |
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
if self.fuSAttn and self.denoise_step <= self.end_fusion: | |
assert query.shape[0] == 4 | |
if "up_blocks.1.attentions.2.transformer_blocks.1" in self.name and self.denoise_step == self.end_fusion: | |
print("now: ", self.denoise_step, "end now:", self.end_fusion, "scale: ", self.fuScale) | |
# pdb.set_trace() | |
scale_factor = 1 / math.sqrt(torch.tensor(head_dim, dtype=query.dtype)) | |
attn_probs = (torch.matmul(query, key.transpose(-2, -1)) * scale_factor).softmax(dim=-1) | |
attn_probs[1] = self.fuScale*attn_probs[1] + (1-self.fuScale)*attn_probs[0] | |
attn_probs[3] = self.fuScale*attn_probs[3] + (1-self.fuScale)*attn_probs[2] | |
hidden_states = torch.matmul(attn_probs, value) | |
else: | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
if self.denoise_step == 50: | |
self.reset_denoise_step() | |
return hidden_states | |
class AttnProcessor2_0_exp(torch.nn.Module): | |
r""" | |
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). | |
""" | |
def __init__( | |
self, | |
hidden_size=None, | |
cross_attention_dim=None, | |
save_in_unet='down', | |
atten_control=None, | |
fuSAttn=False, | |
fuScale=0, | |
end_fusion=0, | |
attn_name=None, | |
): | |
super().__init__() | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
self.atten_control = atten_control | |
self.save_in_unet = save_in_unet | |
self.fuSAttn = fuSAttn | |
self.fuScale = fuScale | |
self.denoise_step = 0 | |
self.end_fusion = end_fusion | |
self.name = attn_name | |
def reset_denoise_step(self): | |
if self.denoise_step == 50: | |
self.denoise_step = 0 | |
# if "up_blocks.0.attentions.1.transformer_blocks.0.attn1" in self.name: | |
# print("attn1 reset successful") | |
def __call__( | |
self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
): | |
self.denoise_step += 1 | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
if attention_mask is not None: | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
# scaled_dot_product_attention expects attention_mask shape to be | |
# (batch, heads, source_length, target_length) | |
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
if self.fuSAttn and self.denoise_step <= self.end_fusion: | |
assert query.shape[0] == 4 | |
if "up_blocks.1.attentions.2.transformer_blocks.1" in self.name and self.denoise_step == self.end_fusion: | |
print("now: ", self.denoise_step, "end now:", self.end_fusion, "scale: ", self.fuScale) | |
# pdb.set_trace() | |
scale_factor = 1 / math.sqrt(torch.tensor(head_dim, dtype=query.dtype)) | |
attn_probs = (torch.matmul(query, key.transpose(-2, -1)) * scale_factor).softmax(dim=-1) | |
attn_probs[1] = self.fuScale*attn_probs[1] + (1-self.fuScale)*attn_probs[0] | |
attn_probs[3] = self.fuScale*attn_probs[3] + (1-self.fuScale)*attn_probs[2] | |
print("exp code") | |
pdb.set_trace() | |
def adain(content, style): | |
content_mean = content.mean(dim=1, keepdim=True) | |
content_std = content.std(dim=1, keepdim=True) | |
style_mean = style.mean(dim=1, keepdim=True) | |
style_std = style.std(dim=1, keepdim=True) | |
normalized_content = (content - content_mean) / content_std | |
stylized_content = normalized_content * style_std + style_mean | |
return stylized_content | |
value[1] = adain(content=value[0], style=value[1]) | |
value[3] = adain(content=value[2], style=value[3]) | |
hidden_states = torch.matmul(attn_probs, value) | |
else: | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
self.reset_denoise_step() | |
return hidden_states | |
class IPAttnProcessor2_0_cross_modal(torch.nn.Module): | |
r""" | |
Attention processor for IP-Adapater for PyTorch 2.0. | |
Args: | |
hidden_size (`int`): | |
The hidden size of the attention layer. | |
cross_attention_dim (`int`): | |
The number of channels in the `encoder_hidden_states`. | |
scale (`float`, defaults to 1.0): | |
the weight scale of image prompt. | |
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16): | |
The context length of the image features. | |
""" | |
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4, skip=False, | |
fuAttn=False, fuIPAttn=False, adainIP=False, end_fusion=0, fuScale=0, attn_name=None): | |
super().__init__() | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
self.hidden_size = hidden_size | |
self.cross_attention_dim = cross_attention_dim | |
self.scale = scale | |
self.num_tokens = num_tokens | |
self.skip = skip | |
self.fuAttn = fuAttn | |
self.fuIPAttn = fuIPAttn | |
self.adainIP = adainIP | |
self.denoise_step = fuScale | |
self.end_fusion = end_fusion | |
self.fuScale = fuScale | |
self.name = attn_name | |
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
def reset_denoise_step(self): | |
if self.denoise_step == 50: | |
self.denoise_step = 0 | |
# if "up_blocks.0.attentions.1.transformer_blocks.0.attn2" in self.name: | |
# print("attn2 reset successful") | |
def __call__( | |
self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
): | |
self.denoise_step += 1 | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
if attention_mask is not None: | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
# scaled_dot_product_attention expects attention_mask shape to be | |
# (batch, heads, source_length, target_length) | |
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
else: | |
# get encoder_hidden_states, ip_hidden_states | |
end_pos = encoder_hidden_states.shape[1] - self.num_tokens | |
encoder_hidden_states, ip_hidden_states = ( | |
encoder_hidden_states[:, :end_pos, :], | |
encoder_hidden_states[:, end_pos:, :], | |
) | |
if attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
if self.fuAttn and self.denoise_step <= self.end_fusion: | |
assert query.shape[0] == 4 | |
if "up_blocks.1.attentions.2.transformer_blocks.1" in self.name and self.denoise_step == self.end_fusion: | |
print("fuAttn") | |
print("now: ", self.denoise_step, "end now:", self.end_fusion, "scale: ", self.fuScale) | |
scale_factor = 1 / math.sqrt(torch.tensor(head_dim, dtype=query.dtype)) | |
text_attn_probs = (torch.matmul(query, key.transpose(-2, -1)) * scale_factor).softmax(dim=-1) | |
text_attn_probs[1] = self.fuScale*text_attn_probs[1] + (1-self.fuScale)*text_attn_probs[0] | |
text_attn_probs[3] = self.fuScale*text_attn_probs[3] + (1-self.fuScale)*text_attn_probs[2] | |
hidden_states = torch.matmul(text_attn_probs, value) | |
else: | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
raw_hidden_states = hidden_states | |
if not self.skip: | |
# for ip-adapter | |
ip_key = self.to_k_ip(ip_hidden_states) | |
ip_value = self.to_v_ip(ip_hidden_states) | |
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
if self.fuIPAttn and self.denoise_step <= self.end_fusion: | |
assert query.shape[0] == 4 | |
print("fuIPAttn") | |
if "down" in self.name: | |
print("wrong! coding") | |
exit() | |
scale_factor = 1 / math.sqrt(torch.tensor(head_dim, dtype=query.dtype)) | |
ip_attn_probs = torch.matmul(query, ip_key.transpose(-2, -1)) * scale_factor | |
ip_attn_probs = F.softmax(ip_attn_probs, dim=-1) | |
ip_attn_probs[1] = self.fuScale*ip_attn_probs[1] + (1-self.fuScale)*ip_attn_probs[0] | |
ip_attn_probs[3] = self.fuScale*ip_attn_probs[3] + (1-self.fuScale)*ip_attn_probs[2] | |
ip_hidden_states = torch.matmul(ip_attn_probs, ip_value) | |
else: | |
ip_hidden_states = F.scaled_dot_product_attention( | |
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False | |
) | |
with torch.no_grad(): | |
self.attn_map = query @ ip_key.transpose(-2, -1).softmax(dim=-1) | |
#print(self.attn_map.shape) | |
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
ip_hidden_states = ip_hidden_states.to(query.dtype) | |
if self.adainIP: | |
def adain(content, style): | |
# 计算内容特征的均值和标准差 | |
content_mean = content.mean(dim=1, keepdim=True) | |
content_std = content.std(dim=1, keepdim=True) | |
# 计算风格特征的均值和标准差 | |
style_mean = style.mean(dim=1, keepdim=True) | |
style_std = style.std(dim=1, keepdim=True) | |
# 归一化内容特征并应用风格特征的均值和方差 | |
normalized_content = (content - content_mean) / content_std | |
stylized_content = normalized_content * style_std + style_mean | |
return stylized_content | |
hidden_states = adain(content=hidden_states, style=ip_hidden_states) | |
else: | |
hidden_states = hidden_states + self.scale * ip_hidden_states | |
if hidden_states.shape[0] == 4: | |
hidden_states[0] = raw_hidden_states[0] | |
hidden_states[2] = raw_hidden_states[2] | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
if self.denoise_step == 50: | |
self.reset_denoise_step() | |
return hidden_states |