Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn.functional as F | |
import numpy as np | |
from PIL import Image | |
BLOCKS = { | |
'content': ['down_blocks'], | |
'style': ["up_blocks"], | |
} | |
controlnet_BLOCKS = { | |
'content': [], | |
'style': ["down_blocks"], | |
} | |
def resize_width_height(width, height, min_short_side=512, max_long_side=1024): | |
if width < height: | |
if width < min_short_side: | |
scale_factor = min_short_side / width | |
new_width = min_short_side | |
new_height = int(height * scale_factor) | |
else: | |
new_width, new_height = width, height | |
else: | |
if height < min_short_side: | |
scale_factor = min_short_side / height | |
new_width = int(width * scale_factor) | |
new_height = min_short_side | |
else: | |
new_width, new_height = width, height | |
if max(new_width, new_height) > max_long_side: | |
scale_factor = max_long_side / max(new_width, new_height) | |
new_width = int(new_width * scale_factor) | |
new_height = int(new_height * scale_factor) | |
return new_width, new_height | |
def resize_content(content_image): | |
max_long_side = 1024 | |
min_short_side = 1024 | |
new_width, new_height = resize_width_height(content_image.size[0], content_image.size[1], | |
min_short_side=min_short_side, max_long_side=max_long_side) | |
height = new_height // 16 * 16 | |
width = new_width // 16 * 16 | |
content_image = content_image.resize((width, height)) | |
return width,height,content_image | |
attn_maps = {} | |
def hook_fn(name): | |
def forward_hook(module, input, output): | |
if hasattr(module.processor, "attn_map"): | |
attn_maps[name] = module.processor.attn_map | |
del module.processor.attn_map | |
return forward_hook | |
def register_cross_attention_hook(unet): | |
for name, module in unet.named_modules(): | |
if name.split('.')[-1].startswith('attn2'): | |
module.register_forward_hook(hook_fn(name)) | |
return unet | |
def upscale(attn_map, target_size): | |
attn_map = torch.mean(attn_map, dim=0) | |
attn_map = attn_map.permute(1,0) | |
temp_size = None | |
for i in range(0,5): | |
scale = 2 ** i | |
if ( target_size[0] // scale ) * ( target_size[1] // scale) == attn_map.shape[1]*64: | |
temp_size = (target_size[0]//(scale*8), target_size[1]//(scale*8)) | |
break | |
assert temp_size is not None, "temp_size cannot is None" | |
attn_map = attn_map.view(attn_map.shape[0], *temp_size) | |
attn_map = F.interpolate( | |
attn_map.unsqueeze(0).to(dtype=torch.float32), | |
size=target_size, | |
mode='bilinear', | |
align_corners=False | |
)[0] | |
attn_map = torch.softmax(attn_map, dim=0) | |
return attn_map | |
def get_net_attn_map(image_size, batch_size=2, instance_or_negative=False, detach=True): | |
idx = 0 if instance_or_negative else 1 | |
net_attn_maps = [] | |
for name, attn_map in attn_maps.items(): | |
attn_map = attn_map.cpu() if detach else attn_map | |
attn_map = torch.chunk(attn_map, batch_size)[idx].squeeze() | |
attn_map = upscale(attn_map, image_size) | |
net_attn_maps.append(attn_map) | |
net_attn_maps = torch.mean(torch.stack(net_attn_maps,dim=0),dim=0) | |
return net_attn_maps | |
def attnmaps2images(net_attn_maps): | |
#total_attn_scores = 0 | |
images = [] | |
for attn_map in net_attn_maps: | |
attn_map = attn_map.cpu().numpy() | |
#total_attn_scores += attn_map.mean().item() | |
normalized_attn_map = (attn_map - np.min(attn_map)) / (np.max(attn_map) - np.min(attn_map)) * 255 | |
normalized_attn_map = normalized_attn_map.astype(np.uint8) | |
#print("norm: ", normalized_attn_map.shape) | |
image = Image.fromarray(normalized_attn_map) | |
#image = fix_save_attn_map(attn_map) | |
images.append(image) | |
#print(total_attn_scores) | |
return images | |
def is_torch2_available(): | |
return hasattr(F, "scaled_dot_product_attention") | |
def get_generator(seed, device): | |
if seed is not None: | |
if isinstance(seed, list): | |
generator = [torch.Generator(device).manual_seed(seed_item) for seed_item in seed] | |
else: | |
generator = torch.Generator(device).manual_seed(seed) | |
else: | |
generator = None | |
return generator |