Spaces:
Running
on
Zero
Running
on
Zero
Leimingkun
commited on
Commit
β’
f343ea1
1
Parent(s):
123f4ac
stylestudio
Browse files- .gitattributes +1 -0
- app.py +44 -29
- app_exp.py +244 -0
- assets/style3.jpg +0 -0
- ip_adapter/__pycache__/__init__.cpython-39.pyc +0 -0
- ip_adapter/__pycache__/attention_processor.cpython-39.pyc +0 -0
- ip_adapter/__pycache__/ip_adapter.cpython-39.pyc +0 -0
- ip_adapter/__pycache__/resampler.cpython-39.pyc +0 -0
- ip_adapter/__pycache__/utils.cpython-39.pyc +0 -0
- ip_adapter/attention_processor.py +2 -0
- ip_adapter/ip_adapter.py +2 -1
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
app_exp.py
|
app.py
CHANGED
@@ -59,23 +59,37 @@ def get_example():
|
|
59 |
case = [
|
60 |
[
|
61 |
'./assets/style1.jpg',
|
62 |
-
"Text-Driven Style Synthesis",
|
63 |
"A red apple",
|
64 |
7.0,
|
65 |
42,
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
],
|
68 |
]
|
69 |
return case
|
70 |
|
71 |
-
def run_for_examples(style_image_pil,
|
72 |
|
73 |
return create_image(
|
74 |
style_image_pil=style_image_pil,
|
75 |
prompt=prompt,
|
76 |
-
|
|
|
77 |
num_inference_steps=50,
|
78 |
-
seed=
|
79 |
end_fusion=end_fusion,
|
80 |
use_SAttn=True,
|
81 |
crossModalAdaIN=True,
|
@@ -86,21 +100,20 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
86 |
seed = random.randint(0, MAX_SEED)
|
87 |
return seed
|
88 |
|
89 |
-
|
90 |
-
def create_image(
|
91 |
-
style_image_pil,
|
92 |
prompt,
|
93 |
-
guidance_scale,
|
94 |
-
num_inference_steps,
|
95 |
-
end_fusion,
|
96 |
-
crossModalAdaIN,
|
97 |
-
use_SAttn,
|
98 |
-
seed,
|
99 |
neg_prompt="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
):
|
101 |
|
102 |
style_image = style_image_pil
|
103 |
|
|
|
104 |
generator = torch.Generator(device).manual_seed(seed)
|
105 |
init_latents = torch.randn((1, 4, 128, 128), generator=generator, device="cuda", dtype=torch.float16)
|
106 |
num_sample=1
|
@@ -122,6 +135,7 @@ def create_image(
|
|
122 |
use_SAttn=use_SAttn,
|
123 |
|
124 |
generator=generator,
|
|
|
125 |
)
|
126 |
|
127 |
if use_SAttn:
|
@@ -135,23 +149,28 @@ title = r"""
|
|
135 |
"""
|
136 |
|
137 |
description = r"""
|
138 |
-
<b>Official π€ Gradio demo</b> for <a href='https://github.com/
|
139 |
How to use:<br>
|
140 |
1. Upload a style image.
|
141 |
-
2. <b>Enter your desired prompt
|
142 |
3. Click the <b>Submit</b> button to begin customization.
|
143 |
4. Share your stylized photo with your friends and enjoy! π
|
144 |
|
145 |
Advanced usage:<br>
|
146 |
1. Click advanced options.
|
147 |
2. Choose different guidance and steps.
|
148 |
-
3. Set the timing for the Teacher Model's participation
|
|
|
149 |
"""
|
150 |
|
151 |
article = r"""
|
152 |
---
|
153 |
π **Tips**
|
154 |
-
|
|
|
|
|
|
|
|
|
155 |
---
|
156 |
π **Citation**
|
157 |
<br>
|
@@ -176,10 +195,6 @@ with block:
|
|
176 |
with gr.Column():
|
177 |
style_image_pil = gr.Image(label="Style Image", type='pil')
|
178 |
|
179 |
-
target = gr.Radio(["Text-Driven Style Synthesis"],
|
180 |
-
value="Text-Driven Style Synthesis",
|
181 |
-
label="task")
|
182 |
-
|
183 |
prompt = gr.Textbox(label="Prompt",
|
184 |
value="A red apple")
|
185 |
|
@@ -190,14 +205,14 @@ with block:
|
|
190 |
|
191 |
guidance_scale = gr.Slider(minimum=1, maximum=15.0, step=0.01, value=7.0, label="guidance scale")
|
192 |
|
193 |
-
num_inference_steps = gr.Slider(minimum=5, maximum=
|
194 |
label="num inference steps")
|
195 |
|
196 |
-
end_fusion = gr.Slider(minimum=0, maximum=
|
197 |
|
198 |
-
seed = gr.Slider(minimum=-1000000, maximum=1000000, value=
|
199 |
|
200 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=
|
201 |
|
202 |
crossModalAdaIN = gr.Checkbox(label="Cross Modal AdaIN", value=True)
|
203 |
use_SAttn = gr.Checkbox(label="Teacher Model", value=True)
|
@@ -218,18 +233,18 @@ with block:
|
|
218 |
inputs=[
|
219 |
style_image_pil,
|
220 |
prompt,
|
|
|
221 |
guidance_scale,
|
222 |
num_inference_steps,
|
223 |
end_fusion,
|
224 |
crossModalAdaIN,
|
225 |
use_SAttn,
|
226 |
-
seed,
|
227 |
-
neg_prompt,],
|
228 |
outputs=[generated_image])
|
229 |
|
230 |
gr.Examples(
|
231 |
examples=get_example(),
|
232 |
-
inputs=[style_image_pil,
|
233 |
fn=run_for_examples,
|
234 |
outputs=[generated_image],
|
235 |
cache_examples=False,
|
|
|
59 |
case = [
|
60 |
[
|
61 |
'./assets/style1.jpg',
|
|
|
62 |
"A red apple",
|
63 |
7.0,
|
64 |
42,
|
65 |
+
10,
|
66 |
+
],
|
67 |
+
[
|
68 |
+
'./assets/style2.jpg',
|
69 |
+
"A black car",
|
70 |
+
7.0,
|
71 |
+
42,
|
72 |
+
10,
|
73 |
+
],
|
74 |
+
[
|
75 |
+
'./assets/style3.jpg',
|
76 |
+
"A orange bus",
|
77 |
+
7.0,
|
78 |
+
42,
|
79 |
+
10,
|
80 |
],
|
81 |
]
|
82 |
return case
|
83 |
|
84 |
+
def run_for_examples(style_image_pil, prompt, guidance_scale, seed, end_fusion):
|
85 |
|
86 |
return create_image(
|
87 |
style_image_pil=style_image_pil,
|
88 |
prompt=prompt,
|
89 |
+
neg_prompt="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
|
90 |
+
guidance_scale=guidance_scale,
|
91 |
num_inference_steps=50,
|
92 |
+
seed=seed,
|
93 |
end_fusion=end_fusion,
|
94 |
use_SAttn=True,
|
95 |
crossModalAdaIN=True,
|
|
|
100 |
seed = random.randint(0, MAX_SEED)
|
101 |
return seed
|
102 |
|
103 |
+
def create_image(style_image_pil,
|
|
|
|
|
104 |
prompt,
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
neg_prompt="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
|
106 |
+
guidance_scale=7,
|
107 |
+
num_inference_steps=50,
|
108 |
+
end_fusion=20,
|
109 |
+
crossModalAdaIN=True,
|
110 |
+
use_SAttn=True,
|
111 |
+
seed=42,
|
112 |
):
|
113 |
|
114 |
style_image = style_image_pil
|
115 |
|
116 |
+
print(seed)
|
117 |
generator = torch.Generator(device).manual_seed(seed)
|
118 |
init_latents = torch.randn((1, 4, 128, 128), generator=generator, device="cuda", dtype=torch.float16)
|
119 |
num_sample=1
|
|
|
135 |
use_SAttn=use_SAttn,
|
136 |
|
137 |
generator=generator,
|
138 |
+
latents=init_latents,
|
139 |
)
|
140 |
|
141 |
if use_SAttn:
|
|
|
149 |
"""
|
150 |
|
151 |
description = r"""
|
152 |
+
<b>Official π€ Gradio demo</b> for <a href='https://github.com/Westlake-AGI-Lab/StyleStudio' target='_blank'><b>StyleStudio: Text-Driven Style Transfer with Selective Control of Style Elements</b></a>.<br>
|
153 |
How to use:<br>
|
154 |
1. Upload a style image.
|
155 |
+
2. <b>Enter your desired prompt</b>.
|
156 |
3. Click the <b>Submit</b> button to begin customization.
|
157 |
4. Share your stylized photo with your friends and enjoy! π
|
158 |
|
159 |
Advanced usage:<br>
|
160 |
1. Click advanced options.
|
161 |
2. Choose different guidance and steps.
|
162 |
+
3. Set the timing for the Teacher Model's participation.
|
163 |
+
4. Feel free to discontinue using the Cross-Modal AdaIN and the Teacher Model for result comparison.
|
164 |
"""
|
165 |
|
166 |
article = r"""
|
167 |
---
|
168 |
π **Tips**
|
169 |
+
<br>
|
170 |
+
1. As the value of end_fusion <b>increases</b>, the style gradually diminishes.
|
171 |
+
Therefore, it is suggested to set end_fusion to be between <b>1/5 and 1/3</b> of the number of inference steps (num inference steps).
|
172 |
+
2. If you want to experience style-based CFG, see the details on the <a href="https://github.com/Westlake-AGI-Lab/StyleStudio">GitHub repo</a>.
|
173 |
+
|
174 |
---
|
175 |
π **Citation**
|
176 |
<br>
|
|
|
195 |
with gr.Column():
|
196 |
style_image_pil = gr.Image(label="Style Image", type='pil')
|
197 |
|
|
|
|
|
|
|
|
|
198 |
prompt = gr.Textbox(label="Prompt",
|
199 |
value="A red apple")
|
200 |
|
|
|
205 |
|
206 |
guidance_scale = gr.Slider(minimum=1, maximum=15.0, step=0.01, value=7.0, label="guidance scale")
|
207 |
|
208 |
+
num_inference_steps = gr.Slider(minimum=5, maximum=200.0, step=1.0, value=50,
|
209 |
label="num inference steps")
|
210 |
|
211 |
+
end_fusion = gr.Slider(minimum=0, maximum=200, step=1.0, value=20.0, label="end fusion")
|
212 |
|
213 |
+
seed = gr.Slider(minimum=-1000000, maximum=1000000, value=42, step=1, label="Seed Value")
|
214 |
|
215 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
|
216 |
|
217 |
crossModalAdaIN = gr.Checkbox(label="Cross Modal AdaIN", value=True)
|
218 |
use_SAttn = gr.Checkbox(label="Teacher Model", value=True)
|
|
|
233 |
inputs=[
|
234 |
style_image_pil,
|
235 |
prompt,
|
236 |
+
neg_prompt,
|
237 |
guidance_scale,
|
238 |
num_inference_steps,
|
239 |
end_fusion,
|
240 |
crossModalAdaIN,
|
241 |
use_SAttn,
|
242 |
+
seed,],
|
|
|
243 |
outputs=[generated_image])
|
244 |
|
245 |
gr.Examples(
|
246 |
examples=get_example(),
|
247 |
+
inputs=[style_image_pil, prompt, guidance_scale, seed, end_fusion],
|
248 |
fn=run_for_examples,
|
249 |
outputs=[generated_image],
|
250 |
cache_examples=False,
|
app_exp.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
sys.path.append("./")
|
3 |
+
import gradio as gr
|
4 |
+
import spaces
|
5 |
+
import torch
|
6 |
+
from ip_adapter.utils import BLOCKS as BLOCKS
|
7 |
+
import numpy as np
|
8 |
+
import random
|
9 |
+
from diffusers import (
|
10 |
+
AutoencoderKL,
|
11 |
+
StableDiffusionXLPipeline,
|
12 |
+
)
|
13 |
+
from ip_adapter import StyleStudio_Adapter
|
14 |
+
|
15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
|
17 |
+
base_model_path = "/mnt/agilab/models/sdxl"
|
18 |
+
image_encoder_path = "/mnt/agilab/models/ipadapter_sdxl/image_encoder"
|
19 |
+
csgo_ckpt = "/mnt/agilab/models/CSGO/csgo_4_32.bin"
|
20 |
+
pretrained_vae_name_or_path = '/mnt/agilab/models/madebyollin_sdxl-vae-fp16-fix'
|
21 |
+
weight_dtype = torch.float16
|
22 |
+
|
23 |
+
vae = AutoencoderKL.from_pretrained(pretrained_vae_name_or_path,torch_dtype=torch.float16)
|
24 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
25 |
+
base_model_path,
|
26 |
+
torch_dtype=torch.float16,
|
27 |
+
add_watermarker=False,
|
28 |
+
vae=vae
|
29 |
+
)
|
30 |
+
pipe.enable_vae_tiling()
|
31 |
+
|
32 |
+
target_style_blocks = BLOCKS['style']
|
33 |
+
|
34 |
+
csgo = StyleStudio_Adapter(
|
35 |
+
pipe, image_encoder_path, csgo_ckpt, device, num_style_tokens=32,
|
36 |
+
target_style_blocks=target_style_blocks,
|
37 |
+
controlnet_adapter=False,
|
38 |
+
style_model_resampler=True,
|
39 |
+
|
40 |
+
fuSAttn=True,
|
41 |
+
end_fusion=20,
|
42 |
+
adainIP=True,
|
43 |
+
)
|
44 |
+
|
45 |
+
MAX_SEED = np.iinfo(np.int32).max
|
46 |
+
|
47 |
+
|
48 |
+
def get_example():
|
49 |
+
case = [
|
50 |
+
[
|
51 |
+
'./assets/style1.jpg',
|
52 |
+
"A red apple",
|
53 |
+
7.0,
|
54 |
+
42,
|
55 |
+
10,
|
56 |
+
],
|
57 |
+
[
|
58 |
+
'./assets/style2.jpg',
|
59 |
+
"A black car",
|
60 |
+
7.0,
|
61 |
+
42,
|
62 |
+
10,
|
63 |
+
],
|
64 |
+
[
|
65 |
+
'./assets/style3.jpg',
|
66 |
+
"A orange bus",
|
67 |
+
7.0,
|
68 |
+
42,
|
69 |
+
10,
|
70 |
+
],
|
71 |
+
]
|
72 |
+
return case
|
73 |
+
|
74 |
+
def run_for_examples(style_image_pil, prompt, guidance_scale, seed, end_fusion):
|
75 |
+
|
76 |
+
return create_image(
|
77 |
+
style_image_pil=style_image_pil,
|
78 |
+
prompt=prompt,
|
79 |
+
neg_prompt="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
|
80 |
+
guidance_scale=guidance_scale,
|
81 |
+
num_inference_steps=50,
|
82 |
+
seed=seed,
|
83 |
+
end_fusion=end_fusion,
|
84 |
+
use_SAttn=True,
|
85 |
+
crossModalAdaIN=True,
|
86 |
+
)
|
87 |
+
|
88 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
89 |
+
if randomize_seed:
|
90 |
+
seed = random.randint(0, MAX_SEED)
|
91 |
+
return seed
|
92 |
+
|
93 |
+
def create_image(style_image_pil,
|
94 |
+
prompt,
|
95 |
+
neg_prompt="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
|
96 |
+
guidance_scale=7,
|
97 |
+
num_inference_steps=50,
|
98 |
+
end_fusion=20,
|
99 |
+
crossModalAdaIN=True,
|
100 |
+
use_SAttn=True,
|
101 |
+
seed=42,
|
102 |
+
):
|
103 |
+
|
104 |
+
style_image = style_image_pil
|
105 |
+
|
106 |
+
generator = torch.Generator(device).manual_seed(seed)
|
107 |
+
init_latents = torch.randn((1, 4, 128, 128), generator=generator, device="cuda", dtype=torch.float16)
|
108 |
+
num_sample=1
|
109 |
+
if use_SAttn:
|
110 |
+
num_sample=2
|
111 |
+
init_latents = init_latents.repeat(num_sample, 1, 1, 1)
|
112 |
+
with torch.no_grad():
|
113 |
+
images = csgo.generate(pil_style_image=style_image,
|
114 |
+
prompt=prompt,
|
115 |
+
negative_prompt=neg_prompt,
|
116 |
+
height=1024,
|
117 |
+
width=1024,
|
118 |
+
guidance_scale=guidance_scale,
|
119 |
+
num_images_per_prompt=1,
|
120 |
+
num_samples=num_sample,
|
121 |
+
num_inference_steps=num_inference_steps,
|
122 |
+
end_fusion=end_fusion,
|
123 |
+
cross_modal_adain=crossModalAdaIN,
|
124 |
+
use_SAttn=use_SAttn,
|
125 |
+
|
126 |
+
generator=generator,
|
127 |
+
latents=init_latents,
|
128 |
+
)
|
129 |
+
|
130 |
+
if use_SAttn:
|
131 |
+
return [images[1]]
|
132 |
+
else:
|
133 |
+
return [images[0]]
|
134 |
+
|
135 |
+
# Description
|
136 |
+
title = r"""
|
137 |
+
<h1 align="center">StyleStudio: Text-Driven Style Transfer with Selective Control of Style Elements</h1>
|
138 |
+
"""
|
139 |
+
|
140 |
+
description = r"""
|
141 |
+
<b>Official π€ Gradio demo</b> for <a href='https://github.com/Westlake-AGI-Lab/StyleStudio' target='_blank'><b>StyleStudio: Text-Driven Style Transfer with Selective Control of Style Elements</b></a>.<br>
|
142 |
+
How to use:<br>
|
143 |
+
1. Upload a style image.
|
144 |
+
2. <b>Enter your desired prompt</b>.
|
145 |
+
3. Click the <b>Submit</b> button to begin customization.
|
146 |
+
4. Share your stylized photo with your friends and enjoy! π
|
147 |
+
|
148 |
+
Advanced usage:<br>
|
149 |
+
1. Click advanced options.
|
150 |
+
2. Choose different guidance and steps.
|
151 |
+
3. Set the timing for the Teacher Model's participation.
|
152 |
+
4.
|
153 |
+
"""
|
154 |
+
|
155 |
+
article = r"""
|
156 |
+
---
|
157 |
+
π **Tips**
|
158 |
+
<br>
|
159 |
+
1. As the value of end_fusion <b>increases</b>, the style gradually diminishes.
|
160 |
+
Therefore, it is suggested to set end_fusion to be between 1/5 and 1/3 of the number of inference steps (num inference steps).
|
161 |
+
2. If you want to experience style-based CFG, see the details on the <a href="https://github.com/Westlake-AGI-Lab/StyleStudio">GitHub repo</a>.
|
162 |
+
|
163 |
+
---
|
164 |
+
π **Citation**
|
165 |
+
<br>
|
166 |
+
If our work is helpful for your research or applications, please cite us via:
|
167 |
+
```bibtex
|
168 |
+
|
169 |
+
```
|
170 |
+
π§ **Contact**
|
171 |
+
<br>
|
172 |
+
If you have any questions, please feel free to open an issue or directly reach us out at <b>leimingkun@westlake.edu.cn</b>.
|
173 |
+
"""
|
174 |
+
|
175 |
+
block = gr.Blocks(css="footer {visibility: hidden}").queue(max_size=10, api_open=False)
|
176 |
+
with block:
|
177 |
+
gr.Markdown(title)
|
178 |
+
gr.Markdown(description)
|
179 |
+
|
180 |
+
with gr.Tabs():
|
181 |
+
with gr.Row():
|
182 |
+
with gr.Column():
|
183 |
+
with gr.Row():
|
184 |
+
with gr.Column():
|
185 |
+
style_image_pil = gr.Image(label="Style Image", type='pil')
|
186 |
+
|
187 |
+
prompt = gr.Textbox(label="Prompt",
|
188 |
+
value="A red apple")
|
189 |
+
|
190 |
+
neg_prompt = gr.Textbox(label="Negative Prompt",
|
191 |
+
value="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry")
|
192 |
+
|
193 |
+
with gr.Accordion(open=True, label="Advanced Options"):
|
194 |
+
|
195 |
+
guidance_scale = gr.Slider(minimum=1, maximum=15.0, step=0.01, value=7.0, label="guidance scale")
|
196 |
+
|
197 |
+
num_inference_steps = gr.Slider(minimum=5, maximum=200.0, step=1.0, value=50,
|
198 |
+
label="num inference steps")
|
199 |
+
|
200 |
+
end_fusion = gr.Slider(minimum=0, maximum=200, step=1.0, value=20.0, label="end fusion")
|
201 |
+
|
202 |
+
seed = gr.Slider(minimum=-1000000, maximum=1000000, value=42, step=1, label="Seed Value")
|
203 |
+
|
204 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
|
205 |
+
|
206 |
+
crossModalAdaIN = gr.Checkbox(label="Cross Modal AdaIN", value=True)
|
207 |
+
use_SAttn = gr.Checkbox(label="Teacher Model", value=True)
|
208 |
+
|
209 |
+
generate_button = gr.Button("Generate Image")
|
210 |
+
|
211 |
+
with gr.Column():
|
212 |
+
generated_image = gr.Gallery(label="Generated Image")
|
213 |
+
|
214 |
+
generate_button.click(
|
215 |
+
fn=randomize_seed_fn,
|
216 |
+
inputs=[seed, randomize_seed],
|
217 |
+
outputs=seed,
|
218 |
+
queue=False,
|
219 |
+
api_name=False,
|
220 |
+
).then(
|
221 |
+
fn=create_image,
|
222 |
+
inputs=[
|
223 |
+
style_image_pil,
|
224 |
+
prompt,
|
225 |
+
neg_prompt,
|
226 |
+
guidance_scale,
|
227 |
+
num_inference_steps,
|
228 |
+
end_fusion,
|
229 |
+
crossModalAdaIN,
|
230 |
+
use_SAttn,
|
231 |
+
seed,],
|
232 |
+
outputs=[generated_image])
|
233 |
+
|
234 |
+
gr.Examples(
|
235 |
+
examples=get_example(),
|
236 |
+
inputs=[style_image_pil, prompt, guidance_scale, seed, end_fusion],
|
237 |
+
fn=run_for_examples,
|
238 |
+
outputs=[generated_image],
|
239 |
+
cache_examples=False,
|
240 |
+
)
|
241 |
+
|
242 |
+
gr.Markdown(article)
|
243 |
+
|
244 |
+
block.launch(server_name="0.0.0.0", server_port=1234)
|
assets/style3.jpg
ADDED
ip_adapter/__pycache__/__init__.cpython-39.pyc
CHANGED
Binary files a/ip_adapter/__pycache__/__init__.cpython-39.pyc and b/ip_adapter/__pycache__/__init__.cpython-39.pyc differ
|
|
ip_adapter/__pycache__/attention_processor.cpython-39.pyc
CHANGED
Binary files a/ip_adapter/__pycache__/attention_processor.cpython-39.pyc and b/ip_adapter/__pycache__/attention_processor.cpython-39.pyc differ
|
|
ip_adapter/__pycache__/ip_adapter.cpython-39.pyc
CHANGED
Binary files a/ip_adapter/__pycache__/ip_adapter.cpython-39.pyc and b/ip_adapter/__pycache__/ip_adapter.cpython-39.pyc differ
|
|
ip_adapter/__pycache__/resampler.cpython-39.pyc
CHANGED
Binary files a/ip_adapter/__pycache__/resampler.cpython-39.pyc and b/ip_adapter/__pycache__/resampler.cpython-39.pyc differ
|
|
ip_adapter/__pycache__/utils.cpython-39.pyc
CHANGED
Binary files a/ip_adapter/__pycache__/utils.cpython-39.pyc and b/ip_adapter/__pycache__/utils.cpython-39.pyc differ
|
|
ip_adapter/attention_processor.py
CHANGED
@@ -838,6 +838,8 @@ class AttnProcessor2_0_hijack(torch.nn.Module):
|
|
838 |
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
839 |
# TODO: add support for attn.scale when we move to Torch 2.1
|
840 |
if self.fuSAttn and self.denoise_step <= self.end_fusion:
|
|
|
|
|
841 |
assert query.shape[0] == 4
|
842 |
scale_factor = 1 / math.sqrt(torch.tensor(head_dim, dtype=query.dtype))
|
843 |
attn_probs = (torch.matmul(query, key.transpose(-2, -1)) * scale_factor).softmax(dim=-1)
|
|
|
838 |
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
839 |
# TODO: add support for attn.scale when we move to Torch 2.1
|
840 |
if self.fuSAttn and self.denoise_step <= self.end_fusion:
|
841 |
+
if self.end_fusion == 0:
|
842 |
+
print("yes")
|
843 |
assert query.shape[0] == 4
|
844 |
scale_factor = 1 / math.sqrt(torch.tensor(head_dim, dtype=query.dtype))
|
845 |
attn_probs = (torch.matmul(query, key.transpose(-2, -1)) * scale_factor).softmax(dim=-1)
|
ip_adapter/ip_adapter.py
CHANGED
@@ -1121,6 +1121,7 @@ class StyleStudio_Adapter(CSGO):
|
|
1121 |
for attn_processor in self.pipe.unet.attn_processors.values():
|
1122 |
if isinstance(attn_processor, AttnProcessor_hijack) or isinstance(attn_processor, IPAttnProcessor_cross_modal):
|
1123 |
attn_processor.num_inference_step = num_T
|
|
|
1124 |
|
1125 |
def set_adain(self, use_CMA):
|
1126 |
for attn_processor in self.pipe.unet.attn_processors.values():
|
@@ -1143,7 +1144,7 @@ class StyleStudio_Adapter(CSGO):
|
|
1143 |
use_SAttn=True,
|
1144 |
**kwargs,
|
1145 |
):
|
1146 |
-
|
1147 |
self.set_endFusion(end_T = end_fusion)
|
1148 |
self.set_adain(use_CMA=cross_modal_adain)
|
1149 |
self.set_SAttn(use_SAttn=use_SAttn)
|
|
|
1121 |
for attn_processor in self.pipe.unet.attn_processors.values():
|
1122 |
if isinstance(attn_processor, AttnProcessor_hijack) or isinstance(attn_processor, IPAttnProcessor_cross_modal):
|
1123 |
attn_processor.num_inference_step = num_T
|
1124 |
+
attn_processor.denoise_step = 0
|
1125 |
|
1126 |
def set_adain(self, use_CMA):
|
1127 |
for attn_processor in self.pipe.unet.attn_processors.values():
|
|
|
1144 |
use_SAttn=True,
|
1145 |
**kwargs,
|
1146 |
):
|
1147 |
+
print(end_fusion)
|
1148 |
self.set_endFusion(end_T = end_fusion)
|
1149 |
self.set_adain(use_CMA=cross_modal_adain)
|
1150 |
self.set_SAttn(use_SAttn=use_SAttn)
|